
Banded Controllers for Scalable POMDP Decision-Making

Kenneth Czuprynski and Kyle Hollins Wray

Abstract— This paper introduces a novel and computationally
efficient policy representation, termed a banded controller, for
Partially Observable Markov Decision Processes (POMDPs).
The structure of a banded controller is obtained by restricting
the number of successor nodes for each node in a finite state
controller (FSC) policy representation; this is formally defined
as the restriction of the controller’s node transition matrices
to the space of banded matrices. A gradient ascent based
algorithm which leverages banded matrices is presented and
we show that the policy structure results in a computational
structure that can be exploited when performing policy eval-
uation. We then show that policy evaluation is asymptotically
superior to a general FSC and that the degrees of freedom can
be reduced while maintaining a large amount of expressivity in
the policy. Specifically, we show that banded controller policy
representations are equivalent to any FSC policy which is per-
mutation similar to a banded controller. Meaning that banded
controllers are computationally efficient policy representations
for a class of FSC policies. Lastly, experiments are conducted
which show that banded controllers outperform state-of-the-art
FSC algorithms on many of the standard benchmark problems.

I. INTRODUCTION

Partially Observable Markov Decision Processes
(POMDPs) are models for single agent decision making
problems [1]. They provide a general framework for
planning under uncertainty and have been applied to
numerous applications throughout robotics [2]; some
examples include self-driving cars [3], target tracking [4],
and aircraft collision avoidance systems [5]. Even outside of
robotics, POMDPs have been used successfully in modeling
cognitive radio [6] and other controlled sensing applications
[7]. The ability to incorporate uncertainty make POMDPs a
powerful modeling tool. The primary drawback of POMDP
models is that they are computationally expensive to solve.
Indeed they are known to be PSPACE complete [8] and
the design of scalable algorithms is challenging. In this
paper, we introduce a novel policy representation which has
provably superior asymptotics when compared to general
finite state controller (FSC) policy representations and
present its use within a gradient ascent based algorithm.

Algorithms for POMDPs are often classified into offline
vs. online algorithms with belief point based methods [9] and
finite state controllers [10] being typical offline approaches.
The belief based framework relies on the reformulation of the
POMDP as a continuous state MDP which is parameterized
by the space of probability distributions over the state space.
Belief based methods work by constructing quantizations
of belief space and generating approximations of the value
function ([11], [12], [13]). The value functions themselves
are parameterized by belief and the resulting polices are
implicit in their representation. One drawback in the ap-

x1 x2

η(x1,ω1,x1)

η(x1,ω1,x2)

η(x2,ω1,x2)

η(x2,ω1,x1)

Fig. 1. Example of a FSC with two nodes X={x1,x2}, one observation
Ω={ω1}, and a finite set of actions A. The stochastic node transitions are
given by η :X×Ω×X→ [0,1] and associated with each node xi∈X , we
have an action selection distribution ψ :X×A→ [0,1]. We remark that the
probability of observing ω1 is dependent on the action selected by ψ.

proach is that the number of parameters for the value function
representation may grow indefinitely.

FSCs provide memory efficient policy representations
which can be represented as directed graphs [10]. Transitions
between the nodes of the graph are observation dependent
and stochastic where each node has an associated action
selection distribution (cf. Figure 1). Controller size can be
efficiently increased [14] and hierarchical approaches can
be used to improve performance [15], [16]. A number of
approaches have been pursued over the years, these include:
nonlinear programming formulations (NLPs) [17], gradient
based methods [18], and policy iteration methods [14], [19].

The structure of the controller can also be tailored to in-
corporate domain knowledge such as periodicity [20] which
can also induce computational structure into the optimization
framework [21]. This work expands on the idea of structured
policy representations for fixed size controllers. It introduces
a novel policy representation which aims to be general
enough to perform well over a variety of domains while still
containing exploitable computational structure, ultimately
resulting in a more scalable controller.

When considering scalable methods, it is important to
mention that online solvers employing search tree techniques
have achieved impressive results [22], [23]. One drawback,
however, is that execution is computationally intensive. This
limits their use on energy constrained systems (e.g. smart-
phones) [19]. FSCs, on the other hand, are ideal for this
application area, as policy execution reduces to traversal of
the directed graph. This makes the development of scalable
FSC methods an important area of research.

The contributions of this work are: (1) a formal definition
of a banded controller (2) a projected gradient ascent based
algorithm that exploits the policy structure (3) theoretical
analysis of the equivalence of banded controllers to a general
class of FSCs (4) analysis of the aymptotics of policy
evaluation and (5) evaluation against state-of-the-art FSC
algorithms over standard benchmarks, and demonstration on
an real robot navigating a household environment.

II. BACKGROUND

POMDPs provide a framework for determining optimal
policies for single agent decision making problems in the
presence of uncertainty. Formally, we express a POMDP as
the tuple 〈S,A,Ω,T,O,R〉, where S, A, and Ω are finite sets
that denote the states, actions, and observations, respectively.
The function T :S×A×S→ [0,1] defines the state transition
model for the POMDP where

T (s,a,s′)=P (s′|s,a)

reflects the probability of transitioning to a new state s′ after
taking action a while in state s. The observation model O :
A×S×Ω→ [0,1] is given by

O(a,s′,ω)=P (ω|a,s′)

and denotes the probability of observing ω after taking action
a and transitioning to state s′. Lastly, the function R :S×
A→R represents the reward model of the POMDP.

In the POMDP context, the states are not directly observ-
able. Instead, one must rely on the action and observation
histories to infer information about the state. Specifically, the
action/observation histories are used to define a probability
distribution over states of the POMDP b∈4n−1, where
4n−1 denotes the n−1 simplex with n= |S|. This distribu-
tion is referred to as the belief and acts as a sufficient statistic
for the history. At each time-step, the belief is updated to
encode each new action/observation and the probability that
the system is in state s is then given by b(s).

A. Policy Representations

There are two primary approaches for policy representa-
tion: belief point based methods and finite state controllers.
In the belief based approach, the policy representation is
defined by directly mapping belief to action. These policies
are defined in terms of the dynamic programming updates

V ∗(b)=max
a∈A

[∑
s∈S

b(s)R(s,a)+γ
∑
ω∈Ω

P (ω|b,a)V ∗(b′)
]
(1)

where b′ denotes the successor belief obtained after taking
action a and observing ω, and γ∈ [0,1) the discount factor.
This denotes the expected discounted reward in terms of
belief. The argument maximizing Equation 1 is then used
to define the mapping between belief and action, π(b)=a.

The FSC representation of a policy π is defined using
a controller with a finite set of nodes X . Each node in
the controller has an associated action selection distribution
ψ :X×A→ [0,1]. The observation dependent transitions be-
tween the nodes are defined by η :X×Ω×X→ [0,1]. The
expected value of a policy π=(ψ,η) is then

V π(x,s)=
∑
a∈A

ψ(x,a)
[
R(s,a)+γ

∑
s′∈S

T (s,a,s′)∑
ω∈Ω

O(a,s′,ω)
∑
x′∈X

η(x,ω,x′)V π(x′,s′)
]

where the optimal policy maximizes over ψ and η for an
initial controller node x0∈X [10].

B. Gradient Ascent
For initial belief b0 and controller node x0 let β0∈R|X×S|

where β0(〈x,s〉)=b0(s)[x=x0] using Iverson bracket [·].
Then, using matrix-vector notation, the optimal policy max-
imizing the expected discounted reward is given by

π∗=argmax
π
β0 ·vπ (2)

and vπ is the value function satisfying the Bellman equation

vπ=rπ+γMπvπ (3)

and rπ is the reward function

rπ(〈x,s〉)=
∑
a

ψ(x,a)R(s,a).

The matrix M is the cross-product MDP matrix defined as

Mπ(〈x,s〉,〈x′,s′〉)

=
∑
a∈A

ψ(x,a)T (s,a,s′)
∑
ω∈Ω

O(a,s′,ω)η(x,ω,x′). (4)

When constructing the matrix M, an enumeration of the
node-state pairings is necessary and the choice of enumera-
tion will impact the structure of the matrix. Throughout this
paper, we assume a state-major ordering. This means that for
a fixed controller node x we enumerate all s before moving
to the next controller node in the vectorization.

To find the policy which maximizes Equation 2 we per-
form gradient ascent in policy space [18]. This requires
differentiation of the function vπ with respect to π. We solve
for vπ starting from Equation 3, this yields

vπ=(I−γMπ)
−1

rπ. (5)

Differentiating Equation 5 then gives
∂vπ

∂π
=Z–1

(∂rπ
∂π

+
∂Z

∂π
Z–1rπ

)
(6)

where we have used Z=I−γMπ for ease of presentation.
We note that Z in Equation 6 is diagonally dominant (cf.
Proposition 4) which implies Z–1 is well defined. The FSC
representation of a policy π is defined in terms of the action
selection distribution ψ and node transition matrix η. These
representations of the policy in combination with Equation
6, result in the following iterate for gradient ascent with a
FSC policy representation

ψ(k+1)(x,a)=ψ(k)(x,a)+αβ0 · ∂vπ
(k)

∂ψ(k)(x,a)
(7)

η(k+1)(x,ω,x′)=η(k)(x,ω,x′)+αβ0 · ∂vπ
(k)

∂η(k)(x,ω,x′)
(8)

where α denotes the step-size.
Lastly, we remark that the policies produced by gradient

ascent must satisfy constraints. In particular, ψ and η must
be valid probabilities and vπ must satisfy Equation 3.
Satisfaction of the Bellman equation can be done implicitly
by expressing Equation 2 as

π∗=argmax
π
β0 ·(I−γMπ)

−1
rπ (9)

whereas the simplex constraints are satisfied via projecting
each new iterate in Equations 7 and 8 onto the simplex.

III. BANDED CONTROLLERS

In this section, the notion of a banded controller is
introduced. We begin by defining the relevant underlying
linear algebra which is then used to formally define a banded
controller. The utility of the representation is then discussed.

A. Banded Matrices

Informally, a banded matrix is defined as being zero after
some limiting point along the upper and lower diagonals.
Formally, we say that a matrix B has lower bandwidth p if
bi,j=0 for all i>j+p and upper bandwidth q if bi,j=0 for
all j>i+q. As a result, the set

Bnp,q :=
{
B∈Rn×n |bi,j=0 if i>j+p or j>i+q

}
represents all real valued n×n banded matrices with lower
bandwidth p and upper bandwidth q. As an example, a matrix
B∈B5

1,2 has the form

B=

b1,1 b1,2 b1,3 0 0
b2,1 b2,2 b2,3 b2,4 0
0 b3,2 b3,3 b3,4 b3,5
0 0 b4,3 b4,4 b4,5
0 0 0 b5,4 b5,5

 .
Another common example is when p=q=1 which results
in a tri-diagonal matrix. However, the above space Bnp,q
is very expressive and contains a large number of struc-
tured matrices. Selecting p=q=0 corresponds to diagonal
matrices; p=n−1, q=0 are lower triangular matrices; and
p=q=n−1 corresponds to full n×n matrices.

One of the useful properties of banded matrices is that the
complexity of their direct solution is directly related to the
bandwidth of the matrix.

Proposition 1: Let B∈Bnp,q then the direct solution of
Bx=b is O(pqn) [24].
This allows for significant savings when solving linear sys-
tems. We will later show how this relates to efficient policy
evaluation.

B. The Space of Banded Controllers

Recall that a finite state controller policy π is defined in
terms of an action selection distribution ψ and node transition
function η.

Definition 1: A finite state controller defined by the pair
(ψ,η) is a banded controller if η(·,ω, ·)∈Bnp,q for ω∈Ω.

This results in structurally constrained policy representa-
tions which: (1) will reduce the size of the search space
and (2) will result in more efficient methods for policy
evaluation. Further, the size of the search space is controlled
by the bandwidth of the matrices in Bnp,q . As a result, the
search space can be made more expressive by widening the
allowable bandwidth or more computationally efficient by
restricting the overall bandwidth.

C. Policy Representation

Imposing structure onto the policy representation reduces
the search space in the underlying optimization problem.
This is computationally advantageous but excludes policy
representations which do not contain this structure. In this
section we show that banded controllers are computationally
efficient representations for a class of controllers with no a
priori structure. We illustrate this with a simple example,
then provide a more general statement on the class of
controllers this applies to.

Let A={left,right,up,down} denote our action space
and consider a controller with four nodes. Assume that the
optimal controller results in the following action selection
distributions for each node

ψ(x1, ·)=(1,0,0,0) ψ(x2, ·)=(0,0,0,1)

ψ(x3, ·)=(0,0,1,0) ψ(x4, ·)=(0,1,0,0)

where the action distribution ordering follows the definition
of A. That is node x1 selects action left, x2 selects action
down and so on. Further, assume the node transition structure
is given by

η(·,ω, ·)=

0 0 0 1
0 0 1 0
0 0.5 0 0.5

0.5 0 0.5 0

 . (10)

This matrix is sparse but not banded. The directed graph
representation of the controller (ψ,η) is given in Figure 2.

Left Right Up Down

1 0.5 0.5

10.50.5

Fig. 2. Controller representation given by Equation 10 for fixed ω.

Next, we note that Equation 10 can be transformed into a
banded matrix by interchanging columns two and four and
rows two and four, resulting in

ηB(·,ω, ·)=

0 1 0 0

0.5 0 0.5 0
0 0.5 0 0.5
0 0 1 0

 . (11)

Formally, the relationship between η and ηB can defined in
terms of a similarity transformation. That is, we have

ηB=P−1ηP

for the permutation matrix

P =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .
Applying the same reordering to ψ by ψB(·, ·)=Pψ(·, ·)

ψB(x1, ·)=(1,0,0,0) ψB(x2, ·)=(0,1,0,0)

ψB(x3, ·)=(0,0,1,0) ψB(x4, ·)=(0,0,0,1)

where the initial controller node x0 is similarly permuted to
obtain x0

B. One can confirm that (x0
B,ψB,ηB) is an equivalent

controller policy to (x0,ψ,η). This example illustrates that
banded controllers are policy representations for a class of
controllers which are not a priori banded. More generally,
these representations provide equivalent controller represen-
tations for all permutation similar controllers.

Definition 2: A controller (ψ,η) is permutation similar
to a banded controller, if there exists a permutation matrix
P satisfying P 2 =I such that P−1ηP ∈B.

That is, any controller η which can be transformed into a
banded matrix via row and column swaps is in the search
space of banded controllers. The underlying insight is that an
action distribution can be associated with any controller node
as long as the relationship between each action distribution
is preserved.

D. Policy Evaluation
Policy evaluation is an essential part of POMDP solution

frameworks. One of the primary motivations for introducing
the notion of a banded controller is that policy evaluation
can be done much more efficiently.

Let Cp,q denote a banded controller with lower and upper
bandwidth p and q, respectively. Further, let nx= |X| and
ns= |S| denote the number of nodes of the FSC and states of
of the POMDP, respectively. Starting from Equation 3, policy
evaluation reduces to solving the linear system of equations

(I−γMπ)vπ=rπ.

In the canonical representation of a FSC, there is no underly-
ing structure in the matrix (I−γMπ) and the solution time
for a direct solve is O(n3

xn
3
s). When considering the banded

controller Cp,q , it can be shown that

Z=I−γMπ

is a banded matrix with lower and upper bandwidth (p+
1)ns−1 and (q+1)ns−1, respectively (cf. Proposition 3).
It then follows from Proposition 1 that policy evaluation
can be performed in O(n3

snxpq). We remark that this is the
complexity for the direct solution and, as a result, there are
no potential issues with iteration convergence and tolerances.

Further, it can be shown that Z is diagonally dominant
(cf. Proposition 4). This allows Gaussian Elimination without
pivoting to be used which preserves the banded structure in
the factored system (cf. [24]).

Proposition 2: Let B∈Bnp,q and let B=LU denote it LU
factorization. If B is diagonally dominant, then L has lower
bandwidth p and U has upper bandwidth q.
Importantly, this means that all subsequent uses of Z−1

in, for example, the gradient computation can be done
efficiently.

It it worth remarking that the asymptotics of iterative solu-
tions are O(n2

xn
2
s). However, in practice for iterative methods

to be effective, a preconditioner is typically necessary. In the
context of policy evaluation, finding an effective precondi-
tioner is difficult because the matrix is parameterized by π.
That is, the linear system changes at each iteration of gradient
ascent which would likely require a new preconditioner.

IV. A BANDED CONTROLLER GRADIENT ASCENT
ALGORITHM

In this section we begin by reformulating the original
optimization given by Equation 9 in terms of a banded
controller. We begin by expressing the simplex constraints
in vector notation and then present the formulation in terms
of in-band node transitions only.

Letting ψ and η denote the vector form of ψ and η, the
simplex constraints can be expressed as

Jψψ=1, ψ≥0 and Jηη=1, η≥0

where the matrices Jψ and Jη are defined to enforce the
appropriate summations to unity. By defining

π=

(
ψ
η

)
and J=

(
Jψ 0
0 Jη

)
the original optimization problem defined by Equation 9
augmented with the banded controller constraint is given by

maximize
π

β0 ·(I−γMπ)
−1

rπ (12)

subject to Jπ=1

π≥0

η(·,ω, ·)∈Bp,q, for ω∈Ω.

The minimizer of Equation 12 is the optimal policy in the
constrained space of banded controllers.

A. Reduced System
Next, we express the above in terms of only the in-band

node transitions, i.e. the non-zero parameters of the banded
controller. Given η(·,ω, ·)∈Bp,q , without loss of generality,
define its vector form as

η=(ηTB ,η
T
0)T

where ηB corresponds to all of the in-band node transitions,
and η0 corresponds to all of the off-band (i.e zero valued)
node transitions.

The goal is to replace η with ηB in Equation 12. This is
done as follows. First, we note that the simplex constraint
implies (

Jη11 Jη12
Jη21 Jη22

)(
ηB
η0

)
=

(
1
1

)
.

Because η0 is identically zero, this implies that Jη11ηB=1.
As a result, by defining

πB=

(
ψ
ηB

)
and JB=

(
Jψ 0
0 Jη11

)
Equation 12 can be written as

maximize
πB

β0 ·(I−γMπB)
−1

rπB (13)

subject to JBπB=1

πB≥0.

This form is equivalent to Equation 12 but has removed
the identically zero components η0. Further, the banded
constraint is implicitly embedded in the optimization which
means no explicit projections onto the space of banded
controllers is necessary.

B. Projected Gradient Ascent

We solve Equation 13 using projected gradient ascent
(PGA). For ease of presentation, let

f(πB)=β0 ·(I−γMπB)
−1

rπB

denote the objective function and

S={πB |JBπB=1 and πB≥0}

denote the set of constraints. PGA produces an intermediate
policy update at iterate k as

π
(k+1/2)
B =π

(k)
B +α(k)∇f(π

(k)
B)

where α(k) denotes step size and ∇f(π
(k)
B) is composed of

all the partial derivatives

∂f(π)

∂πB,i
=β0 ·

(
Z–1

(
∂rπ

∂πB,i
+

∂Z

∂πB,i
Z–1rπ

))
where Z=I−γMπ . The next policy iterate is then obtained
by projecting onto the set of constraints S

π
(k+1)
B =PS

(
π

(k+1/2)
B

)
where PS(·) denotes the projection operator.

Algorithm 1 PGA with line search for a banded controller.
Require: `: The number of nodes.
Require: ε: The convergence criterion.

1: π
(0)
B ← 〈X={1, . . . , `},ψ(0)=RAND(),η(0)

B =RAND()〉
2: v(0) ← POLICYEVALUATION(π(0)

B)
3: k ← 0
4: do
5: ∂vπ

(k)
B

∂π
(k)
B
← COMPUTEGRADIENT(π(k)

B)

6: π
(k+1)
B , v(k+1) ← LINESEARCH(π(k)

B , v(k), ∂v
π
(k)
B

∂π
(k)
B

)

7: π
(k+1)
B ← PROJECTTOSIMPLEX(π(k+1)

B)
8: k ← k+1
9: while RELATIVEERROR(vπ

(k)
B , vπ

(k−1)
B) >ε

10: return PROJECTTOSIMPLEX(π(k)
B)

C. Line Search

In order to minimize the number of iterates when perform-
ing gradient ascent, we aim to increase the quality of each
step by performing a line search algorithm along the gradient
direction. Line search methods typically require evaluation
of the objective function along the direction of the gradient.
In this context, evaluating the objective function requires us
to evaluate the policy at each sample point. As mentioned
in the previous sections, policy evaluation is expensive; as a
result, we employ Golden Section Search which has been
used successfully the PGA context [21]. Golden section
search coupled with the computational efficiency of policy
evaluation for a banded controller allows us to feasibly
generate higher quality gradient updates.

V. THEORETICAL ANALYSIS

In this section, we prove algorithmically relevant theoret-
ical results referenced throughout the paper. Specifically, we
establish that the cross-product MDP matrix is banded and
that the properties needed for efficient policy evaluation hold.

Proposition 3: Assume that the cross-product MDP ma-
trix Mπ in Equation 4 is constructed in state-major order-
ing. Then given a banded controller Cp,q , the matrix Mπ

is banded with lower bandwidth (p+1)ns−1 and upper
bandwidth (q+1)ns−1.

Proof: We begin by writing Mπ as a block matrix with
the blocks indexed by the controller node indices. We have

Mπ=

Mx1,x1

Mx1,x2
. . . Mx1,xnx

Mx2,x1 Mx2,x2 . . . Mx2,xnx
...

Mxnx ,x1
Mxnx ,x2

. . . Mxnx ,xnx

where each block is an ns×ns matrix

Mxi,xj (s,s
′) :=Mπ(〈xi,s〉,〈xj ,s′〉)

with fixed xi,xj ∈X . By definition we have

Mxi,xj (s,s
′)

=
∑
a∈A

ψ(x,a)T (s,a,s′)
∑
ω∈Ω

O(a,s′,ω)η(xi,ω,xj).

Since η(xi,ω,xj) is banded, we have that η(xi,ω,xj)=0
for i>j+p or j>i+q. This implies that Mxi,xj is identi-
cally zero if i>j+p or j>i+q, meaning that the banded
structure of the controller is inherited by the block structure
of Mπ . Because each block is of size ns, it follows that
Mπ has lower bandwidth (p+1)ns−1 and upper bandwidth
(q+1)ns−1.
The next proposition has important consequences for the
factorization of banded systems.

Proposition 4: The matrix Z=I−γMπ is banded and
diagonally dominant.

Proof: The subtraction of γMπ from I has no impact
on the band structure and therefore Z has the same bandwidth
as Mπ . Further, Mπ is a stochastic matrix which implies all
row summations are unity. The result follows by noting that
γ<1.

Corollary 1: For Z=I−γMπ let LU=Z denote its LU
factorization. Then L has lower bandwidth (p+1)ns−1 and
U has upper bandwidth (q+1)ns−1.

The corollary follows by combining Propositions 2 and
4. We note that the LU factorization of a banded matrix
does not necessarily inherit the same bandwidth structure due
to partial pivoting when performing Gaussian Elimination.
However, because the FSC formulation is always diagonally
dominant, the LU factorization can be obtained without
partial pivoting; as a result, the LU factorization inherits
the same bandwidth structure as the original matrix. This
is important because it allows efficient memory use in
computations of Z−1 which is needed at several points in
the above algorithm.

Domain |S| |A| |Ω| |X| NLP Baseline [17] Gradient Ascent Baseline [18] Banded Gradient Ascent
ADR T |π| ADR T |π| ADR T |π|

toy 3 2 1 5 0.08 0.02 25 0.08 0.03 25 0.08 0.02 20
3 2 1 10 0.08 0.04 100 0.08 0.16 100 0.08 0.05 40

qcd 3 2 3 5 0.0 0.04 65 −0.31 0.06 65 −0.22 0.04 50
3 2 3 10 0.0 0.11 280 −0.31 0.65 280 −0.24 0.08 100

milos-aaai97 20 6 8 5 22.1 789.0 185 7.86 293.9 185 9.41 167.4 145
20 6 8 10 20.1 253.1 770 13.4 947.4 770 16.1 307.4 290

query.s3 27 3 3 5 261.3 0.98 70 318.2 97.3 70 311.3 38.1 55
27 3 3 10 261.7 288.3 290 338.5 167.6 290 311.5 58.1 110

tiger-grid 36 5 17 5 0.0 77.3 360 0.0 27.2 360 −0.01 28.7 275
36 5 17 10 — — — 0.0 103.3 1570 −0.11 61.8 550

home-healthcare 64 5 2 5 9.96 2627.4 60 9.86 212.7 60 9.95 110.8 50
64 5 2 10 — — — 9.98 408.9 220 9.98 220.7 100

query.s4 81 4 3 5 267.0 2111.8 75 328.7 268.8 75 283.1 108.9 60
81 4 3 10 — — — 342.0 1079.9 300 281.6 119.8 120

TABLE I
RESULTS FROM SIMULATION. ALGORITHMS: THE PROPOSED BANDED GRADIENT ASCENT, TWO BASELINES: NONLINEAR PROGRAMMING (NLP)
BASELINE [17] AND VANILLA GRADIENT ASCENT BASELINE [18]. DOMAINS: SEVEN BENCHMARKS, EACH VARYING NUMBER OF NODES (|X|).

METRICS: AVERAGE DISCOUNTED REWARD (ADR), AND TIME IN SECONDS (T).

Fig. 3. Experimental results for banded gradient ascent’s controller policy
on a real robot acting in a real household environment. This fully implements
the home-healthcare POMDP domain on an actual robot. The green path
shows the controller’s path computed by banded gradient ascent. The white
path shows the controller’s path from the gradient ascent baseline.

VI. EXPERIMENTS

A. Experimental Setting and Domains

We evaluate the novel banded controller gradient ascent
with line search algorithm. It is compared against two
baseline controller algorithms. The nonlinear programming
(NLP) baseline [17] solves Equations 2 and 3. The vanilla
gradient ascent with line search baseline [18] performs gra-
dient ascent using Equation 6 with the same golden section
line search. Each of the baseline algorithms work with the
same optimization formulation in policy space and all three
controller algorithms are directly compared with the same
fixed number of nodes |X| (5 and 10).

Standard metrics are also used [11], [17]: (1) average
discounted reward (ADR), (2) time to solve in seconds, and
(3) policy size in terms of the number of parameters. Seven
standard POMDP benchmark domains are used, varying in
size and complexity, ranging from the smaller toy and qcd
to the larger tiger-grid and query.s4. Results were averaged
over 10 trials for each combination of algorithm and domain.
The algorithms were implemented and run in Julia 1.6. The
experiments were done on an Intel Core i7-6700HQ CPU
with 4 cores at 2.6GHz and 16GB of RAM.

B. Results and Discussion

Table I shows the results from our experiments. We first
observe that no one FSC algorithm achieves a superior ADR

over all benchmark problems. This can be attributed to
the policy space formulation being non-convex. We observe
that the banded gradient ascent ADR is comparable to the
baseline algorithms and outperforms either NLP or vanilla
gradient ascent for all but one benchmark problem. This is
despite the baseline algorithms containing enough degrees
of freedom to represent any banded controller. This suggests
banded controllers are a useful way of constraining the search
space in the underlying optimization problem.

We observe that banded gradient ascent is typically much
faster than both NLP and gradient ascent baselines. For
example, in larger domains such as home-healthcare, the
banded approach is two times faster than vanilla gradient
ascent, and nearly ten times faster than NLP. In some large
domains, the NLP failed to converge within 2 hours, with its
convergence behavior sporadic overall. To evaluate the effect
that the banded controller’s structure has on robot behavior,
we analyze its use on real robot.

Figure 3 demonstrates a banded controller policy com-
puted by the proposed approach that successfully searches
the household environment. For comparison, a policy com-
puted by gradient ascent is also shown. Both policies were
computed using |X|=10 nodes. We observe that banded
controllers are able to capture a very similar policy, but are
computable up to an order of magnitude faster.

VII. CONCLUSION

This paper introduces a novel gradient based algorithm
which leverages a new structured policy representation
termed a banded controller. We show that the computational
structure induced by the policy representation allows the
algorithm to leverage banded matrices within the gradient
updates for significant speedups. The algorithm is shown to
outperform state-of-the-art finite state controller algorithms
over standard benchmark problems as well as on a real
robot. The theoretical and experimental results demonstrate
that banded controllers are computationally efficient and ex-
pressive structured policy representations which increase the
scalability of finite state controller algorithms for POMDPs.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1, pp. 99–134, 1998.

[2] M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov
decision processes in robotics: A survey,” IEEE Transactions on
Robotics, 2022.

[3] K. H. Wray, S. J. Witwicki, and S. Zilberstein, “Online decision-
making for scalable autonomous systems,” in Proceedings of the 26th
International Joint Conference on Artificial Intelligence, 2017, pp.
4768–4774.

[4] L. Dressel and M. Kochenderfer, “Hunting drones with other drones:
Tracking a moving radio target,” in 2019 International Conference on
Robotics and Automation, 2019, pp. 1905–1912.

[5] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[6] S. K. Jayaweera, Signal Processing for Cognitive Radios. John Wiley
& Sons, Hoboken, NJ, USA, 2014.

[7] V. Krishnamurthy, Partially Observed Markov Decision Processes
from Filtering to Controller Sensing. Cambridge University Press,
2016.

[8] C. Papadimitriou and J. Tsitsiklis, “The complexity of markov decision
processes,” Mathematics of Operations Research, vol. 12, pp. 441–450,
1987.

[9] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, pp. 1–51,
2013.

[10] E. A. Hansen, “Solving POMDPs by searching in policy space,”
in Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence, 1998, pp. 211–219.

[11] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approxima-
tions for large POMDPs,” Journal of Artificial Intelligence Research,
vol. 27, pp. 335–380, 2006.

[12] M. Spaan and N. Vlassis, “Perseus: Randomized point-based value
iteration for POMDPs,” Journal of Artificial Intelligence Research,
vol. 24, pp. 195–220, 2005.

[13] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces.” in Robotics: Science and systems, 2008.

[14] P. Poupart and C. Boutilier, “Bounded finite state controllers,” in
Proceedings of Advances in Neural Information Processing Systems
16, 2004, pp. 823–830.

[15] E. A. Hansen and R. Zhou, “Synthesis of hierarchical finite-state
controllers for pomdps.” in ICAPS, 2003, pp. 113–122.

[16] M. Toussaint, L. Charlin, and P. Poupart, “Hierarchical pomdp con-
troller optimization by likelihood maximization.” in UAI, vol. 24, 2008,
pp. 562–570.

[17] C. Amato, D. S. Bernstein, and S. Zilberstein, “Optimizing fixed-
size stochastic controllers for POMDPs and decentralized POMDPs,”
Autonomous Agents and Multi-Agent Systems, vol. 21, no. 3, pp. 293–
320, 2010.

[18] N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R. Cassandra, “Solv-
ing POMDPs by searching the space of finite policies,” in Proceedings
of the 15th Conference on Uncertainty in Artificial Intelligence, 1999,
pp. 417–426.

[19] M. Grzes and P. Poupart, “Incremental policy iteration with guaranteed
escape from local optima in pomdp planning,” in Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent
Systems, 2015, pp. 1249–1257.

[20] J. K. Pajarinen and J. Peltonen, “Periodic finite state controllers for
efficient POMDP and DEC-POMDP planning,” in Advances in Neural
Information Processing Systems, 2011, pp. 2636–2644.

[21] K. H. Wray and K. Czuprynski, “Scalable POMDP decision-making
using circulant controllers,” in 2021 International Conference on
Robotics and Automation, 2021.

[22] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,”
Advances in neural information processing systems, vol. 23, 2010.

[23] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” Advances in neural information process-
ing systems, vol. 26, 2013.

[24] J. W. Demmel, Applied Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

