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Abstract— This paper presents a novel policy representation
for partially observable Markov decision processes (POMDPs)
called circulant controllers and a provably efficient gradient-
based algorithm for them. A formal mathematical description is
provided that leverages circulant matrices for the controller’s
stochastic node transitions. This structure is particularly ef-
fective for capturing decision-making patterns found in real-
world domains with repeated periodic behaviors that adapt
their cycles based on observation. This includes domains such
as bipedal walking over varied terrain, pick-and-place tasks
in warehouses, and home healthcare monitoring and medicine
delivery in household environments. A performant gradient-
based algorithm is presented with a detailed theoretical analysis,
formally proving the algorithm’s improved performance, as
well as circulant controllers’ structural properties. Experiments
on these domains demonstrate that the proposed controller
algorithm outperforms other state-of-the-art POMDP controller
algorithms. The proposed novel controller approach is demon-
strated on an actual robot performing a navigation task in a
real household environment.

I. INTRODUCTION

The partially observable Markov decision process
(POMDP) is a general single agent decision-making
model [1]. The model has benefited from an increasingly
growing interest with the development of more scalable
algorithms [2], [3], [4], [5], [6], [7]. Consequently POMDPs
have been applied to many robotic domains, growing to
include self-driving car decision-making [8] and aircraft
collision avoidance systems [9]. However, POMDP policy
representations and algorithms are still challenging to scale
as POMDPs are still PSPACE-complete. One reason is that
many algorithms are general-purpose, devised to solve any
POMDP. They cannot readily benefit from known realis-
tic domain-specific knowledge of the underlying problem
structure which if leveraged could significantly improve
performance. Towards this goal, we classify a common
structure found in many robotic applications: cyclic patterns
of actions that adapt from observation. We demonstrate that
a class of POMDP finite state controllers, called circulant
controllers, captures this structure and can be leveraged to
improve convergence in gradient-based algorithms.

Cyclic behaviors are found in many robotic applications.
In bipedal and quadrupedal walking robots, repeated cyclic
patterns of actuation provide the major motion that drives
the system forward [10], [11]. For each configuration of
limbs, the cyclic patterns and overall gait is distinct, with
an additional emphasis put on important foot placement
decisions and balance adjustments augmenting the actuation
cycle. In manufacturing and warehouse scenarios, pick and
place robots must repeatedly pick up requested objects and
collect or otherwise organize them [12], [13]. The major

arm motions are cyclic, as each object is repeatedly picked
up, moved to a specific location, and placed. In navigation
and search domains, such as in home healthcare robots for
eldercare monitoring and medicine delivery, cyclic patterns
of home traversal arise when searching for moving pa-
tients [14], [15], [16]. In order to model partial observability
using POMDPs in these kinds of domains, we should devise
algorithms that explicitly leverage this cyclic behavioral
property. These domains serve as inspiration for this paper’s
circulant controller formulation as it strives towards this goal.

POMDP algorithms are primarily categorized into belief
point-based algorithms and finite state controller-based algo-
rithms. Point-based algorithms can approximate by applying
the update equation at chosen belief points [3], efficiently
apply this update [17], and intelligently choose beliefs [18].
However, these methods stuffer from curses in both dimen-
sionality and history, as the number of required beliefs grows
exponentially in the states and horizon. Controller-based
algorithms benefit from a memory-efficient policy form [19]
that can be scalably expanded [20]. An optimal nonlinear
programming (NLP) method for fixed-sized controllers [4]
benefits from simplicity but suffers from poor performance
using off-the-shelf NLP solvers. Early work on periodic finite
state controllers [21] assigned a hand-coded layer structure,
in the spirit of neural networks, but lacked the formalized
circulant constraint, projection, and provable computational
benefits presented here. Gradient-based optimization of con-
trollers [2] benefits from a direct optimization formulation,
amenable to customization. Its primary drawback is the
inversion of a controller-related matrix.

This paper proposes circulant controllers, which ensure
controller transitions are built from multiple circulant ma-
trices. Circulant matrices enable a provably efficient inverse,
enabling a highly efficient gradient computation. Line search
for circulant controllers is also presented, leveraging the
new efficient inverse in its policy evaluation steps. Circulant
controllers capture the behavior found in many domains:
periodic behavior that changes based on observation. By
utilizing the domain structure, we can quickly compute
highly performant policies.

Our contributions are: (1) a formal statement of the circu-
lant controller (Section III); (2) a gradient-based algorithm
that leverages circulant controllers in policy evaluation and
line search (Section IV); (3) a detailed theoretical analysis
of circulant controllers and the gradient-based algorithm
(Section V); and (4) experiments in three prevalent robotic
domains including a fully implemented circulant controller
for a navigation and search task on a real robot acting in a
real household environment (Section VI).



II. BACKGROUND

A partially observable Markov decision process
(POMDP) [22] is defined by the tuple 〈S,A,Ω,T,O,R〉. S
is a finite set of states. A is a finite set of actions. Ω is a finite
set of observations. T :S×A×S→ [0,1] is a state transition
such that T (s,a,s′)=Pr(s′ |s,a) denotes the probability
of transitioning to state s′ given action a was performed
in state s. O :S×Ω→ [0,1] is an observation function
such that O(s′,ω)=Pr(ω |s′) denotes the probability of
observing ω after transitioning to state s′. R :S×A→R is
a reward function such that R(s,a) denotes the reward for
performing action a in state s.

In POMDPs, the true state of the system in not observed
directly. The agent represents uncertainty over the state by
beliefs, denoted as b∈B⊆4|S| for any belief set B from the
standard n-1 simplex 4|S|. An initial belief b0 is known.

There are two primary ways to maintain an internal state
and choose actions: belief point-based policies [3] or finite
state controller policies [19].

A. Belief Point-Based Policies

In belief point-based policies, the agent explicitly main-
tains a belief b, updating it after performing action a and
observing ω. The resulting successor belief b′ updated via

b′(s′ |b,a,ω)∝O(s′,ω)
∑
s∈S

T (s,a,s′)b(s).

A belief point-based policy π :B→A maps each belief to
an action. The objective is to maximize expected reward
given an initial belief b0∈B and a discount factor γ∈ [0,1).
The value function is V π :B→R is this expected value at
each belief. It can be computed by the Bellman optimality
equation

V ∗(b)=max
a∈A

[∑
s∈S

b(s)R(s,a)+γ
∑
ω∈Ω

Pr(ω|b,a)V ∗(b′)
]
.

B. Finite State Controller Policies

A finite state controller’s policy is defined as π=〈X,ψ,η〉.
X is a finite set of controller nodes. ψ :X×A→ [0,1] is
a stochastic action selection function such that ψ(x,a)=
Pr(a |x) denotes the probability of selecting action a in
node x. η :X×Ω×X→ [0,1] is a stochastic successor selec-
tion function such that η(x,ω,x′)=Pr(x′ |x,ω) denotes the
probability of choosing successor node x′ given observation
ω was made after performing node x’s action.

Controller policies have a value function derived from the
cross-product MDP formed by the controller node transitions
and the underlying MDP [19]. Formally, V π :X×S→R is

V π(x,s)=
∑
a∈A

ψ(x,a)
[
R(s,a)+γ

∑
s′∈S

T (s,a,s′)∑
ω∈Ω

O(s′,ω)
∑
x′∈X

η(x,ω,x′)V π(x′,s′)
]
. (1)

Solving this system of linear equations is called policy
evaluation. Given an initial controller node x0∈X and initial
belief b0∈B, the initial controller’s value is V π(x0, b0)=∑
s∈S b(s)V

π(x0,s).

C. Controller Policy Gradient Ascent

To compute the optimal controller policy, we can derive a
policy gradient and perform gradient ascent [2]. First, let
Mπ∈R|X×S|×|X×S| denote the cross-product MDP state
transition, defined by:

Mπ(〈x,s〉,〈x′,s′〉)

=
∑
a∈A

ψ(x,a)T (s,a,s′)
∑
ω∈Ω

O(s′,ω)η(x,ω,x′). (2)

Importantly, all vectors and matrices in X×S are in
state-major ordering. Let rπ∈R|X×S| with rπ(〈x,s〉)=∑
aψ(x,a)R(s,a). Now Equation 1 can be rewritten as a

value vector vπ∈R|X×S| for the policy π:

vπ=rπ+γMπvπ (3)

resulting in
vπ=(I−γMπ)–1rπ. (4)

Let Z=I−γMπ for notational convenience. The partial
derivative of vπ with respect to a policy parameter π:

∂vπ

∂π
=Z–1

(∂rπ

∂π
+
∂Z

∂π
Z–1rπ

)
. (5)

Also for notational convenience, π refers to any controller
policy parameter ψ(x,a) or η(x,ω,x′).

Gradient ascent strives to maximize the value of the
initial node and belief vector β0∈R|X×S| with β0(〈x,s〉)=
b0(s)[x=x0] using Iverson bracket [·]. With Equation 5,
gradient ascent updates the policy at iteration k via:

ψ(k+1)(x,a)=ψ(k)(x,a)+αβ0 · ∂vπ
(k)

∂ψ(k)(x,a)

η(k+1)(x,ω,x′)=η(k)(x,ω,x′)+αβ0 · ∂vπ
(k)

∂η(k)(x,ω,x′)
(6)

with a step size of α>0. There are two key aspects of
gradient ascent that limit its performance: (1) computing
Z–1 and (2) determining α. The remainder of this paper
defines and analyzes a novel policy structure we call circulant
controllers, that provably addresses these aspects.

III. CIRCULANT CONTROLLERS

This section formally introduces the circulant controller
and how general controllers can be projected onto this space.

A. Circulant Matrices

Circulant controllers, as defined herein, are closely related
to the notion of a circulant matrix. As a result, a brief
overview of the necessary properties is given followed by
the formal definition of a circulant controller.

Any circulant matrix is uniquely defined by it first row.
For any vector c∈Rn we have an associated circulant matrix
C=circ(c) defined by applying the circular shift operator
Q to each successive row, resulting in matrices of the form

C=


c1 c2 . . . cn
cn c1 . . . cn−1

...
. . .

...
c2 c3 . . . c1

 .
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Fig. 1. Abstracted example: circulant controller (left) for walking domain
(right) (Section VI). Actions are shown in nodes. Repeating actions denotes
careful shifting weight between legs. Edges branch on observed terrain.

These matrices have several well known properties which
are stated here for convenience. Let Cn be the space of real
valued n×n circulant matrices.

Proposition 1: The space of circulant matrices Cn is iso-
morphic to Rn and is closed under addition & multiplication.

Corollary 1: The space of circulant matrices Cn is convex.
By definition every circulant matrix is uniquely defined by

its first row and, therefore, a bijection is readily available.
Closure under addition and scalar multiplication is also easily
verified. Next, one of the most celebrated properties of
circulant matrices is related to its eigenvalue decomposition
and is given in the following proposition.

Proposition 2: Any circulant matrix C=circ(c) has
eigenvalue decomposition C=FΛF−1 where F is the
Fourier matrix and Λ=diag(Fc).

That is, circulant matrices are diagonalizable via the
Fourier matrix with eigenvalues given by the Fourier trans-
form of the first row. When coupled with the Fast Fourier
Transform (FFT), significant computational gains can be
achieved. Matrix-vector multiplications can be done using
the FFT, reducing computations from O(n2) to O(n logn).

B. The Space of Circulant Controllers
Equipped with the definition of a circulant matrix, the

formal definition of a circulant controller is as follows.
Definition 1: A controller 〈X,ψ,η〉 is circulant if the

stochastic successor selection mapping η(·,ω, ·) is circulant
for every fixed ω∈Ω.

This results in structurally constrained policy representa-
tions (Figure 1) that inherit the rich properties of circulant
matrices. It also propagates into the general optimization
problem which will work to promote computational structure
in our gradient updates. We can exploit this for significant
computation gains as detailed in the following sections.

C. Circulant Projection
Applying gradient ascent in policy space will result in

updates from η(k) to η(k+1) following Equation 6. However,
the space of circulant controllers is not closed under this
mapping. As a result, it will be necessary to project each
update onto the convex set of circulant matrices.

An efficient orthogonal projection onto this space can be
obtained by noting that the circular shift operator Q can be
used to construct a basis for the space of circulant matrices.
Viewing an arbitrary n×n matrix as an element of Rn2

,
the projection reduces to the standard projection onto a
subspace of Rn2

for which we have a basis. The details of
this construction are given in the proof of Proposition 4.

IV. CIRCULANT GRADIENT ASCENT WITH LINE SEARCH

The algorithm can be broken into three primary operations:
policy evaluation, projection onto the set of constraints
(circulant and simplex), and line search along the gradient.

A. Policy Evaluation

This subsection details how fast policy evaluation can be
achieved by utilizing the computational structure induced by
a circulant controller.

Policy evaluation is given by (4). Without any structure,
the computation of (I−γMπ)

−1 is O(|X×S|3), which
rapidly becomes prohibitive for large problems. However,
when restricted to the space of circulant controllers, the
matrix Mπ can be factored into the product of a block
diagonal matrix D and a block circulant matrix C (cf.
Proposition 3 in Section V.). Concretely, we have

D=BlockDiag
(
D1, . . . ,D|X|

)
where each Dk∈R|S|×|S| and

C=BlockCirc
(
C1, . . . ,C|X|

)
where each Ck∈R|S|×|S| is diagonal. Importantly, although
Mπ is structured, the matrix Z=(I−γMπ) does not share
this structure. As a result, in order to exploit the factorization
of Mπ in the computation of vπ=(I−γMπ)

−1
rπ , the

system is solved iteratively. We do this by proposing a matrix
splitting from which we obtain an efficient stable iteration.

We begin by noting that the matrix Mπ can be expressed
in terms of the above block matrices as

Mπ=


D1C1 D1C2 . . . D1C|X|

D2C|X| D2C1 . . . D2C|X|−1

...
. . .

...
D|X|C2 D|X|C3 . . . D|X|C1

 . (7)

Then letting Mπ
D denote the blocks along the diagonal in

Equation 7 and letting C0 =BlockCirc
(
0,C2, . . . ,C|X|

)
:

Mπ=Mπ
D+DC0. (8)

Substituting Equation 8 into Equation 4 and rearranging[
I−γ

(
Mπ

D+DC0
)]

vπ=rπ

(I−γMπ
D)vπ=rπ+γDC0vπ.

Now we can invert the block diagonal and define the iteration

vπk+1 =(I−γMπ
D)
−1 [

rπ+γDC0vπk
]
, k=1,2, . . . (9)

By using the proposed splitting, the iteration defined in Equa-
tion 9 maintains efficient block structure in all updates. The
block diagonal structure of (I−γMπ

D) allows the inverse
to be computed efficiently and parallelized simply. Further,
because Mπ is a stochastic matrix, each block is invertible.
Using the structure in both D and C0, the multiplications
can be done quickly using FFTs and exploiting the parallel
block structure. A detailed complexity analysis is given in
Proposition 5 in Section V. POLICYEVALUATION performs
the iteration in circulant space from (9).



Algorithm 1 CGA+LS: Circulant gradient ascent line search.
Require: `: The number of nodes.
Require: ε: The convergence criterion.
Require: P : The circulant projection matrix.

1: π(0) ← 〈X={1, . . . , `},ψ(0)=RAND( ),η(0)=RAND( )〉
2: v(0) ← POLICYEVALUATION(π(0))
3: k ← 0
4: do
5: ∂vπ

(k)

∂π(k) ← COMPUTEGRADIENT(π(k))

6: π(k+1), v(k+1) ← LINESEARCH(π(k), v(k), ∂v
π(k)

∂π(k) )
7: π(k+1) ← PROJECTTOSIMPLEX(π(k+1))
8: η(k+1) ← PROJECTTOCIRCULANT(P , η(k+1))
9: k ← k+1

10: while RELATIVEERROR(vπ
(k)

, vπ
(k−1)

) >ε
11: return PROJECTTOSIMPLEX(π(k))

Algorithm 2 LINESEARCH: Custom golden section search.
Require: π: The current policy.
Require: ∂vπ

∂π : The gradient line to search along.
1: α1,α2,α3,α4 ← 0,1− 1

φ ,
1
φ ,1

2: vα2 ← POLICYEVALUATION(π+α2
∂vπ

∂π )
3: vα3 ← POLICYEVALUATION(π+α3

∂vπ

∂π )
4: while |α4−α1|<ε(|α2|+ |α3|) do
5: if β0vα3≥β0vα2 then
6: α1, α2, vα2 , α3 ← α2, α3, vα3 , α2 + 1

φ (α4−α2)

7: vα3 ← POLICYEVALUATION(π+α3
∂vπ

∂π )
8: else
9: α4, α3, vα3 , α2 ← α3, α2, vα2 , α3− 1

φ (α3−α1)

10: vα2 ← POLICYEVALUATION(π+α2
∂vπ

∂π )

11: return π+ 1
2 (α2 +α3)∂v

π

∂π , 1
2 (vα2 +vα3)

B. Line Search Along the Gradient

Gradient ascent requires a step size α. Line search algo-
rithms intelligently search along the gradient line for an α
that results in a high utility [23]. Specific to POMDPs, just
evaluating the ascending function is a relatively costly com-
putation (policy evaluation). Luckily, circulant controllers
have an efficient POLICYEVALUATION step (see the previous
section). Also, we consider a specialized line search called
golden section search [24]. It minimally evaluates the policy
by leveraging the golden ratio φ. Algorithm 2 provides
pseudocode that combines these for our LINESEARCH.

C. Algorithm Summary

Algorithm 1 is pseudocode that combines our policy
evaluation and line search to compute a circulant controller.
RAND initializes a random circulant controller parame-
ters. COMPUTEGRADIENT computes Equation 6. PROJECT-
TOSIMPLEX projects each vector ψ(x, ·) and η(x,ω, ·) to the
simplex with a standard method [25]. PROJECTTOCIRCU-
LANT projects each matrix η(·,ω, ·) to the space of circulant
matrices C|X×S|, as stated in Section III-C, with P derived
from Propositions 3 and 4. RELATIVEERROR computes the
relative sum of differences to check for convergence.

V. THEORETICAL ANALYSIS

In this section algorithmically relevant properties of the
proposed algorithm are proved and analyzed. The first propo-
sition provides the base factorization which allows for fast
policy evaluation.

Proposition 3: Given a circulant controller, Equation 2
has the factorization Mπ=DC, where D is block diagonal
and C is block circulant.

Proof: Let Mxi,xj (s,s
′) :=Mπ(〈xi,s〉,〈xj ,s′〉) denote

the |S|×|S| matrix obtained by fixing an arbitrary xi,xj ∈X
in Equation 2. We then have

Mπ=


Mx1,x1

Mx1,x2
. . . Mx1,x|X|

Mx2,x1
Mx2,x2

. . . Mx2,x|X|
...

Mx|X|,x1
Mx|X|,x2

. . . Mx|X|,x|X|

 . (10)

Defining the |S|×|S| matrices

Dxi(s,s
′)=

∑
a∈A

ψ(a,xi)T (s,a,s′)

and

Cxi,xj (s,s
′)=

{∑
ω∈ΩO(s′,ω)η(xi,ω,xj) if s=s′

0 if s 6=s′

we obtain a factorization for each block Mxi,xj =
DxiCxi,xj . Substituting the block definitions into Equation
10 the matrix can be factored as

Mπ=

Dx1 . . . 0
...

. . .
...

0 . . . Dx|X|


 Cx1,x1

. . . Cx1,x|X|
...

. . .
...

Cx|X|,x1 . . . Cx|X|,x|X|

 .
To see that C is block circulant (that is circulant in the
nodal indices), follows directly from the circulant structure
of η(·,ω, ·). Using the appropriate modular arithmetic for the
indices, we have

Cxi,xj =diag

(∑
ω∈Ω

O(·,ω)η(xi,ω,xj)

)

=diag

(∑
ω∈Ω

O(·,ω)η(xi+1,ω,xj+1)

)
=Cxi+1,xj+1 .

The next proposition provides the existence of a projection
onto the space of circulant controllers via explicit construc-
tion. This is the operator used in Algorithm 1.

Proposition 4: There is an orthogonal projection from the
space of FSCs onto the space of circulant controllers.

Proof: Let C be a n×n circulant matrix and Q be the
n×n circular shift matrix. The circular shift matrix can be
used to define a basis for C, yielding

C=

n∑
k=1

αkQ
k.



Then considering the vectorization c=vec(C) and qk=
1
n2 vec

(
Qk
)

we have

c=

n∑
k=1

αkqk

where the circulant matrix is now represented as an element
of Rn2

. Further, the set of vectors q1, . . . ,qn form an
orthonormal basis for the space of circulant matrices. As a
result, the projection of an arbitrary matrix a=vec(A)∈Rn2

is now a standard Euclidean projection from Rn2

onto a
subspace of Rn2

for which we have an orthonormal basis.
The projection is then given by

P =

n∑
k=1

qkq
T
k .

Proposition 5: Policy evaluation in the space of circulant
controllers is O(|S|3|X|+ |S||X| log |X|).

Proof: The complexity of policy evaluation reduces to
determining the complexity of the iteration given in Equation
9. The matrix (I−γMπ

D) is block diagonal with |X| blocks
of size |S|×|S|. The inverse is obtained by inverting the
individual blocks, resulting in O(|S|3|X|). Matrix-vector
multiplications are then O(|S|2|X|) for (I−γMπ

D) and D.
Lastly, we need to determine multiplication with C0.

The extension of Proposition 2 to the block circulant case
is straight forward. The circulant structure of C0 is with
respect to the nodal indices. Therefore, letting F|X| denote
the Fourier matrix of size |X|, the block Fourier matrix is
given by Fb=F|X|⊗I|S| where I|S| is the identify matrix
of size |S| and ⊗ denotes the Kronecker product. Then

C0 =FbΛbF
−1
b

where Λb is a block diagonal matrix whose blocks are
obtained by applying Fb to the first block row of C0. In our
case, because each block of C0 is diagonal, Λb is a diagonal
matrix. By grouping indices appropriately, a matrix-vector
product with Fb can be computed via |S| FFTs of length
|X| yielding O(|S||X| log |X|). The same follows for F−1

b

using inverse FFTs. As a result, multiplication with C0 is
O(|S||X| log |X|). Combining the asymptotically significant
pieces of the above yields the result.

This not only provides a reduction in the complexity of
the inversion but the factorization reduces the memory re-
quirements significantly by only storing the blocks needed
to represent C and D. Therefore, storage of Mπ goes from
|X|2|S|2 to |S|2|X|+ |S||X|.

Proposition 6: A k−step line search algorithm in the
space of circulant FSCs is O

(
k
[
|S|3|X|+ |S||X| log |X|

])
.

Proof: In the context of Algorithm 1 line search
performs policy evaluations along the direction of the pro-
jected gradient. By Proposition 1 circulant matrices are
closed under addition which implies all policies along the
projected gradient are circulant. The result then follows from
Proposition 5.

VI. EXPERIMENTS

We evaluate the proposed circulant gradient ascent with
line search in four robot POMDP scenarios. It is compared
against two baseline algorithms in three distinct metrics.
The resulting circulant policies are demonstrated in a home
healthcare domain on a real robot in an actual home.

A. Experimental Setting

The standard three metrics are used [3], [4], [7]. The
average sum of discounted rewards (ADR) is an unbiased
measure of policy performance computed by sampled policy
evaluation [3]. The time (T) to compute the policy (in
seconds). The size of the final policy (|π|) is the total required
number of parameters (floating point numbers).

All algorithms were implemented in Julia 1.5.2 on Ubuntu
18.04.5. Experiments were run on an Intel Core i7-6700HQ
CPU at 2.60GHz with 16 GB of RAM. Each domain and
algorithm configuration averaged over 10 trials for a horizon
of 100, with a maximum of 900 seconds allotted per trial.

B. Baseline Algorithms

The nonlinear programming (NLP) formulation is a stan-
dard state-of-the-art POMDP solver for controllers [4], [7].
The algorithm solves for the optimal controller of fixed-
sized `. Here we use Julia’s JuMP [26] NLP solver. We also
compare our approach to the original vanilla gradient ascent
(GA) [2] with a default α=0.01 step size.

To evaluate the effect of both circulant controllers and line
search, we evaluate both the proposed circulant gradient as-
cent (CGA) algorithm and CGA with line search (CGA+LA).

C. Domains

The proposed circulant controllers and algorithm are de-
signed specifically to solve POMDP robotic scenarios which
have different periodic modes of behavior: a walking robot,
a pick-and-place robot, and a home healthcare robot. The
complete source code and descriptions will be provided.

The walking domain is a simplified configuration-space
(C-space) planning scenario based on prior (PO)MDP-based
models [10], [11]. A bipedal robot must move legs in a
periodic pattern between different angles θ∈ [θmin,θmax]
to move forward that is discretized for planning. However,
different terrain features T ={flat,stairs,wall} are detected
by a noisy sensor and each requires the speed of motion to
vary lest the robot fall. S=θc×θp×St denotes the current
leg parameters, previous leg parameters, and terrain type.
A=θ are the desired next leg parameters. Ω=T are the
noisy observations of the terrain. The agent is rewarded with
1 for moving forward, with discount γ=0.9, and 0 otherwise.

The pick-and-place domain requires both individual
object-picking planning in C-space [12] and planning how
many among No={1, . . . , r} multiple objects to bin to-
gether for delivery, given an order request of a cer-
tain number of objects no∈No [13]. We assume a 3-
DOF arm with a base pivot, an elbow joint, and a
hand is parameterized by θb, θj , and θh, respectively.
There are object locations Loi ={shelf,held,box} and a box



Domain |S| |A| |Ω| ` NLP [4] GA [2] CGA CGA+LS
ADR T |π| ADR T |π| ADR T |π| ADR T |π|

Walking 12 2 3 2 3.9 1.3 8 1.9 0.6 8 1.9 0.4 5 3.9 0.1 5
Walking 12 2 3 4 6.6 2.3 40 1.9 2.4 40 1.7 1.4 13 3.7 0.7 13
Pick & Place 72 7 1 5 9.9 63.1 50 8.8 93.1 50 8.0 65.9 34 8.0 10.7 34
Pick & Place 72 7 1 10 7.6 190.5 150 9.5 395.6 150 8.3 218.8 69 9.0 31.4 69
Home Healthcare (H) 144 5 2 5 8.4 372.8 60 9.3 256.4 60 9.2 158.7 28 8.2 71.0 28
Home Healthcare (H) 144 5 2 10 — — — — — — 9.4 740.3 58 8.3 568.3 58
Home Healthcare (A) 169 4 2 4 7.1 625.9 36 8.5 168.5 36 8.6 145.3 18 7.1 107.6 18
Home Healthcare (A) 169 4 2 8 — — — — — — 8.2 467.9 38 7.6 267.5 38

TABLE I
RESULTS FROM SIMULATION COMPARING THE PERFORMANCE OF TWO CONTROLLER BASELINES NLP AND VANILLA GRADIENT ASCENT (GA)

VERSUS THE PROPOSED CIRCULANT GA (CGA) AND CGA WITH LINE SEARCH (CGA+LS). FOUR DOMAINS ARE CONSIDERED, EACH VARYING THE

NUMBER OF NODES (`). METRICS INCLUDE: AVERAGE DISCOUNTED REWARD (ADR), TIME IN SECONDS (T), AND THE SIZE OF THE POLICY (|π|).

Fig. 2. Experiments on a real robot in an actual household environment. This implements the Home Healthcare (A) domain on an actual robot.

location Lb={table,held,conveyor belt}. S=θb×θj×θh×
No×Lb×iLoi describes all configurations of these factors.
A=θb∪θj ∪θh describes the movement actions of the arm.
Ω=No describes the number of requested objects. The agent
is only rewarded with a 1 when the correct requested objects
are placed in the box and the box is placed on the conveyor
belt, with a discount of γ=0.9, and 0 otherwise.

The home healthcare domains consider a robot navigating
in a household environment, searching for a human to either
monitor or deliver medicine [14]. These tasks are among
the most desired ones for a home healthcare robot [15] and
is based on prior POMDP models [16], [27]. They are two
different real LIDAR-mapped homes denoted house (H) and
apartment (A). Figure 2 shows the map for the apartment
home. Its topological map is represented by regions Rm and
edges Em. Let N(r) be the neighbors of region r∈Mr, with
a maximum degree (number of neighbors) of d=maxrN(r).
S=Sr×St denotes the possible configurations of robot and
target human locations, with Sr=St=Mr. A={1, . . . ,d}
denotes which neighbor region (via its neighbor index) is
selected next. Ω={no,yes} denotes observing the human
person to find or not. The agent is rewarded 1 for finding
the human, with discount of γ=0.9, and 0 otherwise.

D. Results and Discussion

Table I presents the results from simulations across the
four domains and four controller algorithms varying the
number of controller nodes `. Figure 3 also visualizes the
value over iteration for all four of the algorithms for the
home healthcare (A) domain. We observe that while the NLP
baseline does solve for the optimal fixed-sized controller,
it relies on generic off-the-shelf NLP algorithms and is
consequently quite slow. Vanilla gradient ascent (GA) is also
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Fig. 3. Value for 100 iterations of the baseline GA (dotted red), CGA (solid
blue), and CGA+LS (solid green) in the walking domain. The optimal value
is shown (black dotted). Here, CGA+LS converges quickly and optimally.

very slow. GA’s number of iterations is high because of its
non-adaptive step size. It also has an expensive Z–1 compu-
tation per iteration. Both baselines struggle to scale well to
the larger POMDPs. The proposed circulant gradient ascent
(CGA), however, are demonstrated to rapidly converge to
good-performing circulant policies. Moreover, the proposed
CGA with line search (CGA+LS) significantly improves
convergence with its adaptive step size. Interestingly, the
proposed CGA+LS also significantly saves on memory |π|,
given the circulant structure of η(·,ω, ·). Lastly, Figure 2
shows the execution of a circulant controller produced by
CGA+LS on a real robot navigating in an actual household,
demonstrating their effectiveness in practice.

VII. CONCLUSION

Circulant controllers are POMDP policy forms that can
capture periodic action behaviors found in robotic domains.
Circulant gradient ascent (CGA) and CGA with line search
(CGA+LS) are rapidly-converging and memory-efficient al-
gorithms for computing a circulant controller. Results in
simulation and on a robot demonstrate their effectiveness.
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