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Abstract— This paper presents a novel gradient ascent al-
gorithm and nonlinear programming algorithm for finite state
controller policies in constrained partially observable Markov
decision processes (CPOMDPs). A key component of the gra-
dient ascent algorithm is a constraint projection to ensure
constraints are satisfied. Both an optimal and an approximate
projection are formally defined. A theoretical analysis of the
algorithm and its projections is presented, formally proving
aspects of projection correctness and algorithm convergence.
Experiments evaluate the baseline and novel algorithms, as well
as both constraint projections, on seven CPOMDP benchmark
domains. The proposed novel algorithm is demonstrated on an
actual robot performing a navigation task in a real household
environment.

I. INTRODUCTION

The constrained partially observable Markov decision pro-
cess (CPOMDP) is a single agent decision-making model [1]
that generalizes the POMDP [2] to include multiple objec-
tives [3], [4], [5]. Specifically, the CPOMDP’s objective is
to maximize expected reward for a primary task objective,
subject to the constraints that multiple additional objectives
have expected costs less than or equal to their allotted
budgets. Multi-objective decision-making in robotics has also
enjoyed recent growing interest, with applications ranging
from planetary rovers [6] to autonomous vehicles [7]. In
these domains, the primary navigation task is subject to
operation within a measure of expected safety, among other
potential objectives [6], [8]. The growing number of these
real world domains result in even larger CPOMDPs. Un-
fortunately, the current state-of-the-art algorithms struggle
to scale, primarily due to the optimization complexities to
ensure these constraints are satisfied, especially in belief
point-based policy representations. In this paper, we propose
a novel optimization formulation for finite state controller
policy representations, and solve it using a mathematically-
grounded scalable projected gradient ascent algorithm.

Finite state controllers represent the policy by a collection
of abstract nodes [9]. Each node has a different action
selection distribution function. After performing an action,
the next node is selected by a successor selection distribution
function, and can be unique based on the current node
and observation made. This differs from a belief point-
based representation, which uses a large collection sampled
beliefs, each with a corresponding value hyperplane called α-
vectors [10]. At a current belief, actions are chosen by finding
the best α-vector’s associated action. After performing an
action, a belief update mechanism is used.

Controller-based algorithms for POMDPs benefit from a
formal mathematical nonlinear programming (NLP) problem
statement, which can be solved given the desired fixed

number of nodes as a parameter [11]. Compared to point-
based policies, the controller policy representation itself is
not dependent on the state. It also does not require sampling
beliefs, which is beneficial given that beliefs tend to grow
exponentially with the number of states. This also tends
to produce more compact policies. This NLP approach
has been successfully extended to multiagent decentralized
POMDPs and partially observable Markov games [11], [12],
but to the best of our knowledge has not been explored in
CPOMDPs. The NLP has also been solved directly using
POMDP gradient ascent [13]. While prior CPOMDP work
has mentioned the desire to use gradient ascent [1], it did
not provide a formal optimization statement or an algorithm,
instead proposing a genetic algorithm with limited success.
One reason is that it is not obvious how best to enforce the
CPOMDP constraints without sacrificing scalability.

Approaches have instead favored a belief point-based
policy representation, combining clever heuristic methods
to approximately enforce the constraints. Constrained point-
base value iteration (CPBVI) for CPOMDPs [14] extends
PBVI [10] by repeatedly solving a minimax quadrati-
cally constrained program to prune α-vectors and ensure
constraints are satisfied. Risk-bounded AO∗ (RAO∗), a
heuristic search algorithm, was proposed for a CPOMDP-
related model called a chance-constrained POMDP (CC-
POMDP) [6]. Constrained approximate linear programming
(CALP) [15] instead iteratively solves an approximate LP
over a smaller subset of repeatedly sampled beliefs. These
methods, however, suffer from the drawbacks of belief-point-
based policies and can lack a formal connection to the
underlying optimization problem.

We present projected gradient ascent (PGA) for finite state
controller policies in CPOMDPs. PGA iteratively performs
line search along the gradient then projects back to the
space of constraint-satisfying policies. PGA proposes using
an efficient golden section search for CPOMDPs. A key
contribution in PGA is the novel projection step that inte-
grates the constraint. We propose both the optimal as well
as a highly scalable and effective approximate projection that
obviates non-linearities in the constraining objectives.

Our contributions are: (1) a formal statement of the
optimization problem (Section III); (2) a novel gradient
ascent algorithm with its optimal and approximate projection
formalizations (Section IV); (3) formal proofs of projection
correctness and properties of convergence (Section V); and
(4) experiments in seven benchmark domains including a
complete implementation of a navigate and search domain
on a real robot acting in a real home (Section VI).



II. BACKGROUND

A constrained partially observable Markov decision
process (CPOMDP) [1] is defined by the tuple
〈S,A,Ω,T,O,R,C,β〉. S, A, and Ω are finite sets
of states, actions, and observations, respectively.
T :S×A×S→ [0,1] is a state transition denoting the
probability T (s,a,s′)=Pr(s′ |s,a) of transitioning
to state s′ given action a was performed in state s.
O :S×Ω→ [0,1] is an observation function denoting
the probability O(s′,ω)=Pr(ω |s′) of observing ω
after transitioning to state s′. R :S×A→R denotes the
primary reward R(s,a) for performing action a in state
s. C=[C1, . . . ,Cm]T denotes a vector of m constraint
costs. Each Ci :S×A→R+ denotes the cost Ci(s,a) for
performing action a in state s. This can be written in a
vector form C(s,a)=[C1(s,a), . . . ,Cm(s,a)]T as well.
β=[β1, . . . ,βm]T denotes a vector of budgets. Each βi≥0
denotes the maximum expected cost allowed for cost i.

The agent maintains a belief over the true state b∈4|S|
starting from an initial belief b0. 4n refers to the n−1
simplex. For a belief b, performing an action a, and observing
ω, the next belief b′ over each state s′ is computed by:

b′(s′)∝O(s′,ω)
∑
s∈S

T (s,a,s′)b(s). (1)

An agent’s policy π is used to select actions based on
an internally maintained state. There are two leading policy
representations. Belief point-based policies [10] directly map
each belief to an action π :4|S|→A. These policies require
the maintained internal belief state during execution.

Finite state controller policies [9] maintain an abstract
internal node state. Formally, a controller policy is defined
by the tuple π=〈X,ψ,η〉. X is a set of abstract nodes.
ψ :X×A→ [0,1] is an action selection function denoting the
probability ψ(x,a)=Pr(a |x) of selecting action a in node
x. η :X×Ω×X→ [0,1] is a node transition function denot-
ing the probability η(x,ω,x′)=Pr(x′ |x,ω) of transitioning
to node x′ after making observation ω from node x.

The expected values of the reward vπr and the costs vπi
are computed by the Bellman equation [1], [13]:

vπr =rπ+γMπvπr and vπi =cπi +γMπvπi (2)

where each vπr ,r
π,vπi ,c

π
i ∈R|X×S| denotes the values,

reward, or costs of each of node-state pair. The vec-
tor of rewards and costs are denoted by rπ(〈x,s〉)=∑
aψ(x,a)R(s,a) and cπi (〈x,s〉)=

∑
aψ(x,a)Ci(s,a). The

matrix Mπ∈R|X×S|×|X×S| denotes the transitions from
each node-state pair 〈x,s〉 to 〈x′,s′〉 [13]:

Mπ(〈x,s〉,〈x′,s′〉)

=
∑
a∈A

ψ(x,a)T (s,a,s′)
∑
ω∈Ω

O(s′,ω)η(x,ω,x′). (3)

After solving for the node-state values in Equation 2, the final
values of the policy at the initial node x0 and belief b0 can be
computed by δT

0v
π
r and δT

0v
π
i with δ0(〈x,s〉)=b0(s)[x=x0]

with Iverson bracket [·]. The objective in CPOMDPs is to
find a policy π maximize δT

0v
π
r subject to each δT

0v
π
i ≤βi.

III. OPTIMIZATION FORMULATION

Formally, the constrained optimization can be written as:

maximize
π,vπr ,v

π
1 ,...,v

π
k

δT
0v

π
r (4)

subject to ψ(x, ·)∈4|A|, for x∈X,
η(x,ω, ·)∈4|X|, for x∈X,ω∈Ω,

vπr =rπ+γMπvπr ,

vπi =cπi +γMπvπi , for i∈{1, . . . ,m},
δT
0v

π
i ≤βi, for i∈{1, . . . ,m}.

The equality constraints enforce satisfaction of the Bellman
equations. The inequality constraints enforce the expected
costs of the constraining value functions. This novel for-
mulation to solve CPOMDPs can be solved using off-the-
shelf nonlinear solvers, as was successfully done in standard
POMDPs [11]. This approach is explored in Section VI.

An alternative means of expressing Equation 4 is to
eliminate vπ entirely by considering optimization purely
with respect to policy parameters. This can be done because
value can be viewed as a dependent variable through the
Bellman equations. Rewriting Equation 2 yields:

vπr =(I−γMπ)–1rπ and vπi =(I−γMπ)–1cπi . (5)

This equivalent constrained optimization is:

maximize
π

δT
0(I−γMπ)–1rπ (6)

subject to ψ(x, ·)∈4|A|, for x∈X,
η(x,ω, ·)∈4|X|, for x∈X,ω∈Ω,

δT
0(I−γMπ)–1cπi ≤βi, for i∈{1, . . . ,m}.

The Bellman equations are still guaranteed to be satisfied
as it is used in the formulation of the objective function
and constraints. This form benefits from far fewer constraints
compared to Equation 4. The drawback is that this requires
computing an inverse, and introduces non-convexities with
respect to the policy. Thus the projection onto the constraint
space does not have a clear simplification in the context of
Projected Gradient Ascent.

We propose a novel gradient ascent algorithm for solving
Equation 6 with an efficient approximate projection method.

IV. CONTROLLER GRADIENT ASCENT FOR CPOMDPS

We begin by rewriting the optimization in Equation 6 with
more compact notation to simplify presentation. Let

f(π)=δT
0(I−γMπ)−1rπ, (7)

denote the objective and h(π)=[h1(π), . . . ,hm(π)]T with

hi(π)=δT
0(I−γMπ)−1cπi , for i∈{1, . . . ,m} (8)

be used to denote the inequality constraints with π referring
to the controller’s parameters ψ(x,a) and η(x,ω,x′). Let
n= |X||A|+ |X×Ω||X| be the total number of unknown
policy parameters. Let J∈R(|X|+|X×Ω|)×n be defined using



two vectors of ones 1ψ∈R|A| and 1η∈R|X| to form Jψ=
blockdiag(1T

ψ, . . . ,1
T
ψ) and Jη=blockdiag(1T

η, . . . ,1
T
η):

J=

[
Jψ 0
0 Jη

]
.

Let us represent the policy as a vector π∈Rn, stacking ψ
and η in order. The product Jπ can now be used to enforce
probability summation to unity.

The optimization problem defined in Equation 6 is then:

maximize
π

f(π) (9)

subject to Jπ=1,

π≥0,

h(π)≤β.

The first two constraints restrict π to valid probabilities:

J ={π |Jπ=1 and π≥0} .

The last inequalities reflect budget constraint satisfaction:

H={π |h(π)≤β} . (10)

We can then express the above problem compactly as

maximize
π∈C

f(π) (11)

where C=H∩J .
We solve the formulation given in Equation 11 via Pro-

jected Gradient Ascent (PGA) with line search. Let Z=
I−γMπ for notational convenience. The gradient ∇f(π)
is defined by the partial derivatives [13]:

∂f(π)

∂πi
=δT

0

(
Z–1

(
∂rπ

∂πi
+
∂Z

∂πi
Z–1rπ

))
(12)

for each parameter πi. The gradient step at iteration k is:

ξ(k) =π(k) +α(k)∇f(π(k))

where α(k) is determined via golden section line search,
a novel approach for CPOMDPs, based on its success in
POMDPs [16] (Algorithm 2). This intermediate update is
not necessarily feasible. The projection step, PC(ξ), projects
ξ onto the set C. Thus the iteration over k is:

π(k+1) =PC

(
π(k) +α(k)∇f(π(k))

)
. (13)

The set C is generally non-convex, making the computation
of the projection PC challenging to perform.

A. Policy Evaluation and Constraints
For a given policy π, evaluation of the objective function

f(π) and all constraints hi(π) requires m+1 policy eval-
uations following Equation 7 and 8. In all equations, the
inversion Z–1 =(I−γMπ)–1 is by far the most expensive
operation. Importantly, however, it is independent of the
specific value (vr or vi) being computed. As a result, for
any policy π, the LU factorization of Z can be computed
once and reused for all m remaining policy evaluations. The
subsequent policy evaluations can then be performed on the
order of a matrix vector multiplication. Recognizing this
feature and employing it provides significant performance
improvements in practice.

Algorithm 1 CPOMDP projected gradient ascent (PGA).
Require: |X|: The number of nodes.
Require: ε: The convergence criterion.

1: ξ(0), v(0) ← RAND(|X|), 0
2: π(1) ← PROJECT(ξ(0)) . Eq. 14 or 16
3: k ← 1
4: do
5: ∇f(π(k)) ← COMPUTEGRADIENT(π(k)) . Eq. 12
6: ξ(k),v(k)←LINESEARCH(π(k), ∇f(π(k))) . Alg. 2
7: Z–1 ← COMPUTEINVERSE(ξ(k))
8: if δT

0v
(k)≥δT

0v
(k) and δT

0Z
–1c

(k)
i ≥δT

0Z
–1c

(k)
i ∀i then

9: π(k+1) ← ξ(k)

10: else
11: π(k+1) ← PROJECT(ξ(k)) . Eq. 14 or 16
12: Z–1 ← COMPUTEINVERSE(π(k+1))
13: v(k+1) ← Z–1r(k+1)

14: k ← k+1
15: while RELATIVEERROR(v(k), v(k−1)) > ε
16: return π(k),f(π(k))

Algorithm 2 LINESEARCH: Custom golden section search.
Require: π: The current policy.
Require: ∇f(π): The gradient line to search along.
Require: ε: The convergence criterion.

1: α1,α2,α3,α4 ← 0,1− 1
φ ,

1
φ ,1

2: π2, π3 ← π+α2∇f(π), π+α3∇f(π)
3: Z–1

2 ← COMPUTEINVERSE(π2)
4: Z–1

3 ← COMPUTEINVERSE(π3)
5: while |α4−α1|<ε(|α2|+ |α3|) do
6: vπ2 , vπ3 ← Z–1

2 rπ2 , Z–1
3 rπ3

7: if δT
0v

π3≥δT
0v

π2 then . Option δT
0Z

–1
3 cπ3

i ≥δT
0Z

–1
3 cπ2

i

8: α1, α2, Z–1
2 , α3 ← α2, α3, Z–1

3 , α2 + 1
φ (α4−α2)

9: π3, π2 ← π+α3∇f(π), π3

10: Z–1
3 ← COMPUTEINVERSE(π3)

11: else
12: α4, α3, Z–1

3 , α2 ← α3, α2, Z–1
2 , α3− 1

φ (α3−α1)
13: π2, π3 ← π+α2∇f(π), π2

14: Z–1
2 ← COMPUTEINVERSE(π2)

15: return 1
2 (π2 +π3), 1

2 (vπ2 +vπ3)

B. Optimal Constraint Projections

The one-step projection PC in Equation 13 requires solving

minimize
π

1

2

∥∥∥π(k) +αk∇f(π(k))−π
∥∥∥2

2
(14)

subject to Jπ=1,

π≥0,

h(π)≤β.

This has a convex quadratic objective function but contains
non-convex inequality constraints. As a result, the projection
is expensive to perform; further, it needs to be computed
each iteration. To make the projection more feasible, an
approximation is introduced in the next section.



C. Approximate Constraint Projections

The primary difficulty in solving Equation 14 is related to
non-convexity of the functions hi(π). Thus, we approximate
each hi(π) by its linearization around the current policy
iterate π(k) via its truncated Taylor expansion:

hi(π)≈hi(π(k))+∇hi(π(k))T(π−π(k)). (15)

To apply this approximation, let the Jacobian ∇h(π(k)) be:

∇h(π(k))=

∇h1(π(k))T

...
∇hm(π(k))T


and let b∈Rn+m be:

b=

[
0n

β−h(π(k))+∇h(π(k))π(k)

]
where 0n∈Rn denotes the vector with n zeros and A be:

A=

[
−In

∇h(π(k))

]
where In∈Rn×n is the identity matrix. The optimization
problem in Equation 14 then becomes:

minimize
π

1

2

∥∥∥π(k) +α(k)∇f(π(k))−π
∥∥∥2

2
(16)

subject to Jπ=1,

Aπ≤b.

This optimization problem is convex and, more specifically,
is a linearly-constrained quadratic program. This approxi-
mation is much easier to solve than Equation 14 and can
be done using off-the-shelf solvers. As a result, we use this
formulation for the projection PC .

In the context of gradient ascent, this can be viewed as
defining an approximation of the set C=H∩J at each iterate
by linearizing the constraints in H defined in Equation (10).
This results in the update at iteration k:

H(k)←
{
π |h(π(k))+∇h(π(k))(π−π(k))≤β

}
,

C(k)←H(k)∩J ,

π(k+1)←PC(k)
(
π(k) +α(k)∇f(π(k))

)
(17)

which replaces the iteration defined in Equation 13. In
summary, we linearize each hi(·) around the current policy
π(k) to construct an approximation of the constraint near
π(k) which we denote by C(k). We then project onto C(k) by
solving Equation 16.

As this is an approximation, it is of course possible that
linearization results in inconsistent constraints. In this case,
the approximate problem (Equation 16) would be ill-posed.
In order to ensure this is avoided, we can evaluate feasibility
of the linearzation during line search. If the proposed step
results in an infeasible approximate sub-problem, we reduce
the proposed step-size until a feasible approximate projection
is possible. If not found, we can perform the more expensive
projection (Equation 13) to obtain the next iterate.

V. THEORETICAL ANALYSIS

In this section we will establish relevant theoretical details
of the presented algorithm. In all of the subsequent propo-
sitions we assume the existence of feasible points for all
optimization formulations considered. We first show the ex-
istence of solutions for the primary optimization formulation.

Proposition 1: Let U∗ denote the optimal set for Equa-
tion 9. Then U∗ is non-empty.

Proof: We first show that C=H∩J is compact. The
pre-image of each inequality constraint is given by

h–1
i ((−∞, ci])={π |hi(π)∈(−∞, ci]}

for i∈{1, . . . ,m}. Because (−∞, ci] is closed and each hi(·)
is continuous we have h–1

i ((−∞, ci]) is closed. Therefore,

H=

m⋂
i=1

h–1
i ((−∞, ci])

is closed. The simplex J is a closed bounded subset of
Rn which means it is compact. Then C=H∩J is the
intersection of a closed and compact set which implies C is
compact. Since f(π) is continuous it follows that the optimal
value f∗ is finite and the optimal set U∗ is non-empty.

With existence of a maximizer established, we next present
some properties of the projection sub-problems. This will
also serve to motivate our approximation.

Proposition 2: Assume that H defined in Equation 10 is
convex. Then the projection PC :Rn→C is unique.

Proof: The objective function in Equation 14 is strictly
convex. If H convex, it follows that the set C=H∩J is
compact and convex. Then Equation 14 is the minimization
of a strictly convex function over a compact convex set. The
result follows from standard convex theory.
The following corollary results from H(k) being a convex.

Corollary 1: Each projection PC(k) :Rn→C(k) is unique.
Because H is generally not convex, Corollary 1 highlights
the approximation’s usefulness in addition to its reduction in
computational cost.

Next we show that under mild regularity assumptions on
the objective function f :C(k)→R, our iteration produces
policies which increase the expected reward f(π) while
respecting the constraint approximation C(k). Following this,
we will show that for a convergent sequence of policies the
limit is feasible with respect to the original constraint set.

Proposition 3: Assume f :C(k)→R is L-smooth and let
π(k) be defined through the iteration from Equation 17. Then

F (π(k+1))−F (π(k))≥
(

1

α(k)
− L

2

)∥∥∥π(k+1)−π(k)
∥∥∥2

2

where F (π)=f(π)−g(k)(π) with g(k)(π) the indicator
function on C(k) and α(k)∈(0, 2

L ).
Proof: The update defined in Equation 17 can be

written as the proximal operator associated with the indicator
function g(k)(π). We have

π(k+1) =PC(k)
(
π(k) +α(k)∇f(π(k))

)
=argmin

π

{
α(k)g(k)(π)+

1

2

∥∥∥π−(π(k) +α(k)∇f(π(k))
)∥∥∥2

2

}



which by definition of the proximal operator yields

π(k+1) = prox
α(k)g(k)

(
π(k) +α(k)∇f(π(k))

)
.

Therefore, π(k+1) satisfies the differential inclusion

0∈∂
(
α(k)g(k)(π(k+1))

)
+π(k+1)−

(
π(k) +α(k)∇f(π(k))

)
and rearranging shows that the difference is a subgradient,(
π(k) +α(k)∇f(π(k))

)
−π(k+1)∈∂

(
α(k)g(k)(π(k+1))

)
.

From the definition of subgradient, we have

〈π(k) +α(k)∇f(π(k))−π(k+1),π(k)−π(k+1)〉

≤α(k)
(
g(k)(π(k))−g(k)(π(k+1))

)
.

Multiplying through by a negative and rearranging yields

〈∇f(π(k)),π(k+1)−π(k)〉

≥ 1

α(k)

∥∥∥π(k)−π(k+1)
∥∥∥2

2
+g(k)(π(k+1))−g(k)(π(k)). (18)

Because f is L-smooth we

f(π(k+1))≥f(π(k))+∇f(π(k))T(π(k+1)−π(k))

− L
2

∥∥∥π(k+1)−π(k)
∥∥∥2

2
.

Subsituting in Inequality 18 we have

F (π(k+1))≥F (π(k))+
1

α(k)

∥∥∥π(k)−π(k+1)
∥∥∥2

2

− L
2

∥∥∥π(k+1)−π(k)
∥∥∥2

2

where F (π)=f(π)−g(k)(π), from which we obtain

F (π(k+1))−F (π(k))≥
(

1

α(k)
− L

2

)∥∥∥π(k+1)−π(k)
∥∥∥2

2
.

Proposition 4: Let {π(k)} be a sequence generated by
Algorithm 1. Further, assume π(k)→π∗ and that each hi
in Equation 8 is smooth in a neighborhood of π∗. Then π∗

is a feasible point of the optimization given in Equation 9.
Proof: Consider the Taylor series approximation of hi

around policy iterate π(k) evaluated at π∗. We have

hi(π
∗)=hi(π

(k))+∇hi(π(k))T(π∗−π(k))

+(π∗−π(k))Thi∇2(ξ)(π∗−π(k))

for some ξ in between π(k) and π∗. The projection PC(k)
then ensures

hi(π
∗)−(π∗−π(k))T∇2hi(ξ)(π

∗−π(k))

=hi(π
(k))+∇hi(π(k))T (π∗−π(k))≤ci.

Taking the limit of both sides and using the smoothness of
hi we have

hi(π
∗)= lim

k→∞

(
hi(π

(k))+∇hi(π(k))T(π∗−π(k))
)
≤ci.

VI. EXPERIMENTS

For direct comparison of controller-based algorithms, the
proposed PGA algorithm, with its optimal and approximate
projections is compared with an scalable optimal constrained
NLP (CNLP) baseline on seven standard benchmark do-
mains. PGA is demonstrated on a real robot implementing
the home healthcare domain in the real world.

A. Experimental Setting

The standard metrics are used [10], [15]: average dis-
counted reward/cost (ADR/ADC) and time to solve (in
seconds). The proposed PGA algorithm was implemented
in Julia 1.5.2. The constraint nonlinear program (CNLP)
baseline algorithm solves the optimal formulation in Equa-
tion 4 with an off-the-shelf NLP solver [11]. It was solved
using Ipopt in Julia’s JuMP package. The experiments were
done on an Intel Core i7-6700HQ CPU with 4 cores at
2.60GHz and 16GB of RAM. Results are averaged over 10
trials for each combination of algorithm and domain. Each
combination of algorithm, domain, and controller size was
allotted 2 hours to converge and return a solution.

B. Domains

The domains are constrained versions of standard POMDP
benchmarks. The toy and qcd domains are from the original
CPOMDP paper [1]. The milos-aaai97, query.s3, query.s4,
and tiger-grid domains are CPOMDPs created from aug-
mented POMDPs that include a cost constraint [15].

The home-healthcare domain is a POMDP domain [16]
that is augmented to include a cost constraint. It has S=
Sr×St denoting the regions of the robot and the target,
respectively. A denotes neighboring region selection and Ω
denotes observing the target or not. The goal is to navigate in
this regional topological map to find the static target based
on refining the belief about where it is. The reward is 1
for finding the target, 0 otherwise. The CPOMDP version
includes a cost of 1 for traversing certain rooms. The robot
experiments implement this domain in the real world.

C. Results and Discussion

Table I presents the results from the experiments. Overall,
we observe that the proposed PGA algorithm using an
approximate projection solves the problem much faster in
comparison to the constrained NLP (CNLP) baseline. CNLP
uses a generic off-the-shelf solver, whereas PGA is able
to exploit the CPOMDP problem structure to more quickly
solve the CPOMDP and compute similar final policies.

Increasing the controller size |X| is shown to reliably
improve the solution quality while increasing the time to
solve. As the domains increase in size (|S|, |A|, and |Ω|),
and/or the number of controller nodes (|X|), other algorithms
begin to fail to solve the problems at all. PGA is able to scale
to solve these much larger CPOMDPs, enabling us to even
solve a real robot planning problem.

Comparing CNLP with PGA Optimal, we see that the
optimal projection inside of gradient ascent is far more
limited. It is only able to solve the smallest of problems



Domain |S| |A| |Ω| β |X| Constrained NLP Baseline [11] PGA Optimal PGA Approximate
ADR ADC T ADR ADC T ADR ADC T

toy 3 2 1 0.95 5 0.08 0.08 0.65 0.08 0.09 2.0 0.07 0.07 0.21
toy 3 2 1 0.95 10 0.08 0.08 0.39 0.08 0.09 48.7 0.08 0.08 2.0
qcd 3 2 3 0.2 5 −0.04 0.8 0.47 −0.31 0.0 2.3 −0.22 0.67 0.29
qcd 3 2 3 0.2 10 −0.33 0.15 2.3 −0.26 0.45 29.6 −0.17 0.91 2.1
milos-aaai97 20 6 8 10 5 23.2 10.0 740.5 — — — 12.7 10.0 227.2
milos-aaai97 20 6 8 10 10 20.0 10.0 3124.3 — — — 16.9 10.0 563.6
query.s3 27 3 3 53 5 261.2 14.6 2.5 — — — 335.1 9.2 64.3
query.s3 27 3 3 53 10 — — — — — — 344.1 8.7 166.0
tiger-grid 36 5 17 18 5 −0.25 19.4 5684.8 — — — −1.16 19.8 287.1
tiger-grid 36 5 17 18 10 — — — — — — −0.76 19.9 734.9
query.s4 81 4 3 60 5 — — — — — — 342.4 8.8 335.6
query.s4 81 4 3 60 10 — — — — — — 339.4 8.9 1607.7
home-healthcare 169 4 2 3 5 — — — — — — 7.7 6.5 580.6
home-healthcare 169 4 2 3 10 — — — — — — 8.2 7.5 2777.8

TABLE I
RESULTS FROM SIMULATION. ALGORITHMS: THE PROPOSED PROJECTED GRADIENT ASCENT (PGA) (OPTIMAL AND APPROXIMATE PROJECTIONS)

AND THE CONSTRAINED NLP (CNLP) BASELINE [11]. DOMAINS: SEVEN BENCHMARKS, EACH VARYING NUMBER OF NODES (|X|). METRICS:
AVERAGE DISCOUNTED REWARD/COST (ADR & ADC), AND TIME IN SECONDS (T).

Fig. 1. Experiments that implement home-healthcare on a real robot in an actual household environment. The unconstrained POMDP’s path (white) freely
traverses the home [16]. The CPOMDP’s path (green) is constrained to avoid northern rooms (blue), demonstrating PGA’s successful constraint satisfaction.

(e.g., |S|=3) and at a high cost (up to 48 seconds). The
CNLP, using a generic optimization formulation, is able to
compute solutions for problems up to |S|=36 here, albeit
with |X|=5 nodes, and at a very high time to compute of
5684 seconds, which is over 1.5 hours. The primary reason
for PGA Optimal’s inability to scale is the optimal projection
continually iterated inside of gradient ascent.

Addressing this exact point, PGA Approximate signifi-
cantly improves the speed of this iterated projection inside
gradient ascent. Comparing PGA Approximate to CNLP, we
see that it is able to scale to solve much larger problems.
For example, CNLP took 5684 seconds to solve a domain of
size |S|=36, |A|=5 and |Ω|=17. PGA Approximate was
able to solve this exact problem in 287 seconds. The trend
continues, as the larger home-healthcare domain with |S|=
169 states using |X|=10 nodes took only 2777 seconds.
CNLP was unable to solve home-healthcare after 2+ hours
of computation. Comparing values, such as in milos-aaai97
and query.s3, we see that CNLP and PGA Approximate are
able to both compute reasonable policies that are within the
budget, in spite of the approximations. Depending on the
problem structure, either CNLP’s or PGA Approximate’s
projections, which are approximate, might compute a better
valued policies. However, the overall trend in scalability and
quality remains clear. The other controller-based CPOMDP
algorithms are unable to solve these large problems, whereas
PGA Approximate can solve them, and is able to retain good
reward and cost values.

Figure 1 demonstrates the home-healthcare domain im-
plemented on a real robot. PGA Approximate is the only
controller-based algorithm able to solve this large CPOMDP
domain; its policy was deployed in this home environment
and shown in green in Figure 1. For comparison, we also
solved the unconstrained POMDP to illustrate the effect of
the constraint on PGA Approximate’s computation. Uncon-
strained by the room traversal constraint, the robot moves
in a circular loop around the home searching for its target
goal (white). When constrained to avoid the northern rooms
(blue), PGA Approximate is demonstrated to successfully
produce constraint-satisfying search behavior (green).

VII. CONCLUSION

This paper presents two novel algorithms for controllers:
projected gradient ascent (PGA)—with an optimal and ap-
proximate projection—and a variant nonlinear programming
(NLP) method. PGA performs a customized golden section
search along the policy gradient and projects the space of
policies satisfying constraint objectives. The approximate
projection converts the optimal nonlinear projection with a
matrix inverse into an efficient quadratic program. Theoreti-
cal analysis of PGA show the uniqueness of the approximate
projection and constraint satisfication for convergent se-
quences of policies. The approach is experimentally validated
in standard benchmarks as well as on a real robot, demon-
strating PGA’s success in increasing scalability towards the
goal of improving real world autonomous robots.
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