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Abstract—We present solutions for autonomous vehicles in
limited visibility scenarios, such as traversing T-intersections,
as well as detail how these scenarios can be handled simul-
taneously. The approach models each problem separately as
a partially observable Markov decision process (POMDP). We
propose an approach for integrating limited visibility within
a POMDPs and implementing them on a physical robot. In
order to address scalability challenges, we use a framework
for multiple online decision-components with interacting actions
(MODIA). We present the novel necessary architectural details
to deploy MODIA on an actual robot. The entire approach is
demonstrated on a fully operational autonomous vehicle proto-
type acting in the real world at two different T-intersections.

I. INTRODUCTION

Autonomous vehicles (AV) require the ability to reason
about scenarios with limited visibility [2, 21, 6, 4]. The
National Highway Traffic Safety Association determined that
94% of accidents in the U.S. are caused by human error [8].
The most prevalent cause (44% of cases) is a recognition
error, in part a consequence of limited visibility. While
high quality sensors (e.g., LIDARs and cameras) can greatly
facilitate perception of the observable environment, AVs still
cannot necessarily perceive the unobservable environment
behind buildings, walls, and other obstructions [21]. They are
capable, however, of detecting their own limited visibility [3].
To maximize safety, AVs must reason about these “known
unknowns” and intelligently make decisions for when to go,
stop, or edge forward slowly for visibility when entering an
occluded T-intersection or passing an obstacle in the road.

This essential aspect of AV reasoning has only began to
be explored recently. Approaches that introduce hand-crafted
parameters [12] or a basic measure of risk [21] into the
low-level motion planner’s optimization or even the go/no-
go mid-level decision-making [6] have been proposed. While
these more engineered approaches provide a straight-forward
means to slow the AV down, they are finely tuned for very
specific scenarios (e.g., 4-way uncontrolled intersections).
Therefore, the approach does not necessarily scale to the
wide array of scenarios found in real-world driving and does
not provide any general framework or method beyond these
narrow autonomous driving situations.

The partially observable Markov decision process
(POMDP) [9] provides a powerful model for sequential
decision-making under limited visibility, sensor noise,
and other forms of uncertainty. Specifically it can model
known sensor limitations (e.g., limited visibility) through its
probabilistic model of observing other vehicles. POMDPs

Fig. 1. Reasoning under limited visibility about both a T-intersection (left)
and passing an obstacle (right) through MODIA implemented on a fully
operational autonomous vehicle prototype acting on real public roads.

have only recently been embraced as a solution for
general AV decision-making [2, 3, 11]. Initial attempts
also used POMDPs for limited visibility in impractically
large continuous [3] and discrete [5] state spaces at n-way
intersections [2, 7]. Semi-autonomous systems [18] and
introspective competence [1] attempt to scale these solutions
by leveraging human feedback. Recent POMDP algorithms
allow scalable AV reasoning for multiple objectives [17, 14],
leverage GPUs [15], and employ nonlinear programming
techniques for generalized controllers [16, 20]. These
algorithms still, however, cannot scale to handle a single
large monolithic POMDP. To the best of our knowledge,
all prior work was done in simulation, preserving concerns
about the feasibility of POMDPs, and critically lacking the
details to actualize them on a robot.

This paper proposes a novel solution for limited visibility
reasoning in AVs using POMDPs. An exemplar limited vis-
ibility scenario is considered: T-intersections. We propose a
novel architectural implementation of a mathematical frame-
work called MODIA [19, 13]. Our novel MODIA architecture
fills in the critical details necessary to deploy POMDPs and
MODIA on a real robot that were previously lacking. It
consists of small well-defined POMDP decision problems
(DPs) that are solved offline. When vehicles are perceived
online, DPs are instantiated as decision components (DCs).
DCs recommend an action at specific arbitration points along
the route, with conflicts resolved by an executor arbitration
function (e.g., take the safest action). Virtual vehicles, imag-
ined just outside of the field-of-view, are also created and
instantiate DCs to allow for reasoning about possible imper-
ceptible vehicles. This MODIA architecture is successfully
demonstrated on a real AV prototype (Figure 1).

Our contributions are: (1) a general architecture for limited
visibility POMDP decision-making in AVs; (2) a novel
POMDP solution for T-intersections; (3) a demonstration of
POMDPs in MODIA on a real AV.



II. BACKGROUND

A. The POMDP Model

A POMDP is defined by a tuple 〈S,A,Ω, T,O,R〉 [9, 10].
S is a set of n states. A is a set of m actions. Ω is a set of
z observations. T : S × A× S → [0, 1] is a transition, with
state s and action a, the successor s′ follows T (s, a, s′) =
Pr(s′|s, a). O : A × S × Ω → [0, 1] is the observation
likelihoods, with action a and successor s′, observation ω
follows O(a, s′, ω) = Pr(ω|a, s′). R : S × A → R is a
reward, with state s and action a the reward is R(s, a).

In POMDPs, the agent does not observe the true state of
the world, instead maintaining a belief over the true state.
Formally, any belief b is a distribution over the state, denoted
b ∈ B ⊆ 4n using the standard n-simplex 4n or any belief
subset B. For a belief b, after performing an action a, and
making observation ω, the updated belief b′baω follows:

Pr(s′|b, a, ω) = Pr(ω|b, a)-1O(a, s′, ω)
∑
s∈S

T (s, a, s′)b(s)

with b′baω = [Pr(s′1|b, a, ω), . . . , P r(s′n|b, a, ω)]T and nor-
malizing constant Pr(ω|b, a)-1. An initial belief is b0 ∈ B.

A policy defines which action the agent will take in each
belief. Formally, a policy is π : B → A. The objective
is to maximize expected discounted reward for an infinite
horizon. Formally, we seek to find an optimal policy π∗

that maximizes the value V : B → R at the initial belief
V (b0) = E[

∑∞
t=0 γ

tRt|b0, π∗] with discount factor γ ∈ [0, 1)
and Rt denoting the random variable for the reward at time t.
The model enables us to write a Bellman optimality equation
for the value of reachable belief b:

V (b) = max
a∈A

(∑
s∈S

b(s)R(s, a) + γ
∑
ω∈Ω

Pr(ω|b, a)V (b′baω)
)
.

B. The MODIA Framework

The multiple online decision-components with interacting
actions (MODIA) framework [19] enables scalability in real-
world POMDP decision-making systems by separately solv-
ing each decision-making subproblem, such as negotiating
with other vehicles or passing an obstacle. MODIA is defined
as the tuple 〈D, {Ct}, ε〉. D = {D1, . . . ,Dk} is a set of k
decision-making problem (DP) POMDPs, known a priori.
Each DP POMDP Di has the same action space A = Ai.
Online, whenever a new DP Di scenario is detected at time
t, a decision-making component (DC) Ctj is instantiated as a
copy of the original Di including its policy πt

j = πi. An
active DC maintains a belief btj and recommends actions
πj(b

t
j). Ct = {Ct1, . . . , Ct`} is the set of all active DCs at

time t, unknown a priori. ε : A∗ → A is the executor
function mapping any action recommendations to a final
action performed by the system. At each time step t, all
active DCs Ctj ∈ Ct recommend an action πj(b

t
j). So for

recommendations at = 〈π1(bt1), . . . , π`(b
t
`)〉, the executor

arbitrates which action should be performed by ε(at).
The novel architecture to implement MODIA on a robot

with multiple POMDPs is presented in the next section.

III. AUTONOMOUS VEHICLE ARCHITECTURE

The AV must make second-to-second decisions along a
fixed high-level route using static information about the
map (e.g., detailed road information) and dynamic perceived
sensor information (e.g., vehicles). Stop, edge forward, and
go decisions must be made which control the motion along
the trajectory. To accomplish scalable online decision-making
we employ MODIA.

Three key aspects of this architecture are detailed: (A)
MODIA architecture, (B) executor decisions at arbitration
points, and (C) virtual vehicles. Once established, we present
an example of a DP that reasons under constrained visibility:
(D) the T-intersection scenario. Figure 2 provides an archi-
tectural overview.

A. Implementing the MODIA Framework on an AV

In order to implement MODIA on a robot, it needs to be
linked to a route plan, perception, and trajectory control. The
result of high-level route planning is an ordered sequence
of arbitration points P = 〈P1, . . . , Pr〉. At each arbitration
point Pk = 〈p`k, pak〉 has a physical location p`k ∈ R2 and an
associated mid-level action pak ∈ A. Here we consider stop,
edge, and go actions A = {as, ae, ag}. The low-level trajec-
tory control uses these points as an input to its constrained
optimization continual planner. Mid-level decision-making
controls the points’ actions online, continually adjusting them
to safely and efficiently reach its destination.

Each category of scenarios the robot must make decisions
about, such as traversing a T-intersection or passing an
obstacle, is defined as a DP. Each DP Di is parameterized
by features θi of the map, localization, and/or perception’s
detections. For example, a T-intersection scenario can have
Θi = 〈θ`i , θni 〉 with another vehicle’s relative incoming lane
θ`i = {`l, `r} (left/right) and the number of its crossing lanes
θni ∈ N. These Θi parameterize the transition, observation,
and reward functions to allow for minor customizations, such
as to model different shapes of T-intersection. These DPs are
solved offline and the resulting policy πi is stored.

Monitors M = 〈M1, . . . ,Mk〉 are process nodes Mi for
each type of DP Di. They convert raw perception features F
into abstracted beliefs Bi and arbitration points P relevant
for Di, acting as the function Mi : F → Bi × P . For
example, position and velocity for AV localization Fav and
a perceived other vehicle Fov each return vectors in R4, then
F = Fav×Fov and the monitor isMi : R4×R4 → Bi×P .
Each monitor Mi has a clear instantiation and termination
condition for DCs as a function of features detected by
perception f tj ∈ F , localization, and/or the map. This
includes the creation of virtual vehicles presented here.

DCs are the online use of a DP Di’s policy πi detected
by the monitor Mi. Each DP can have many instantiated
DCs. For example, a DP for a single T-intersection vehicle
can have one DC for each such perceived (or virtual) vehicle.
At each time step t, DCs Ctj obtain its belief and arbitration
point from the monitor Mi(f

t
j ) = 〈btj , P t

j 〉. Cj recommends
action πi(btj) for arbitration point P t

j = 〈pt,`j , pt,aj 〉.
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Fig. 2. An architectural overview of MODIA (right) grounded in an illustrative example (left): A concurrent encounter of T-intersection and pass obstacle
scenarios with limited visibility left and right. Left: There is one perceived moving vehicle (yellow) and one pass obstacle vehicle (blue). Two virtual
vehicles (yellow dotted circles) are created from the limited field of view. Arbitration points (triangles) show their arbitrated actions (green = go, yellow
= edge, red = stop). Right: All rounded rectangles are distinct process nodes. Raw data (Map, Per, Loc) is used to create tracked and virtual vehicles;
multi-AV communication compressed data is also integrated. Monitors for each DP type create beliefs from this vehicle information. DCs are maintained,
instantiated from a DP database, each recommending an action for an arbitration point. The executor arbitrates at these points for trajectory planning.

B. Executor Decisions at Arbitration Points

Given the action recommendations of all DCs at time t,
the executor must now arbitrate actions at all arbitration
points Pk ∈ P given its action recommendations atk. Here
we consider an executor arbitration function ε that selects
the most conservative recommendation [19]. That is, stop is
preferred to edge which is preferred to go. Formally, for each
arbitration point Pk ∈ P , the action recommendations for the
point are given by atk = {pt,aj ,∀Cj |p`k = pt,`j }. The executor
applies its arbitration function at each point pak ← ε(atk) by:

ε(atk) =

 as, if as ∈ atk
ae, if as /∈ atk ∧ ae ∈ atk
ag, otherwise

(1)

noting that if atk = ∅, the third case implicitly assigns go ag .

C. Virtual Vehicle Reasoning

POMDPs enable belief-based reasoning about a vehicle’s
existence even if it has never actually been perceived by
perception. Single monolithic POMDPs for AV decision-
making [3] define a state space for up to some maximum
number of possible vehicles x [4]. Perceived vehicles (xp≤x)
are reasoned about in the same model as imagined potential
vehicles outside of view (xv≤x−xp) [5].

In MODIA, xp perceived vehicles are instantiated as
separate POMDP DCs. It is this decomposition that enables
MODIA’s scalability—that is, linear in the number of pos-
sible vehicles x. Virtual vehicles are the mechanism in the
MODIA architecture that handle any xv imagined vehicles
outside of view. Each xv virtual vehicle is also a separate
POMDP DC.

LIDAR, stereo cameras, and other sensors provide an
occupancy grid representing robot-frame knowledge about
current sensor imperceptibility. We create virtual vehicles at
the edge of the detectable visibility range along all lanes.
For example at a T-intersection, two virtual vehicle DCs will
always exist, one for each incoming lane.

D. T-Intersection Scenario

The T-intersection POMDP 〈ST , AT ,ΩT , TT , OT , RT 〉 is
a DP that models AV-to-vehicle interaction when the AV
arrives at the stop line of a T-intersection. Left and right
incoming lanes can be obscured, producing virtual vehicles.

State Space: ST = S`
av × St

av × S`
ov × Sg

denote the AV’s location (before-stop/at-stop/before-
gap/at-gap/terminal/goal), the AV’s time at the location
(short/long), the other vehicle’s location (empty/before-
stop/at-stop/before-gap/at-gap/goal), and if a gap exists
when the AV arrives (yes/no).

Action Space: AT = A = {as, ae, ag} for both DPs.
Observation Space: ΩT = Ωm

av × Ωm
ov × Ωg

ov denote
if the AV successfully moved (yes/no), if the other vehicle
successfully moved (yes/no), and if a gap is detected (yes/no).

Transition Function: TT : ST × A × ST → [0, 1]
multiplies parameterized probabilities of quantifiable events
within the state-action space including: (1) the AV and/or
other vehicle moving forward, (2) time incrementing, (3)
entering a terminal state, (4) the other vehicle slowing down
for a crossing AV, (5) the gap’s existence toggling based on
other vehicle movement, etc.

Observation Function: OT : A × ST × ΩT → [0, 1]
also multiples parameterized probabilities including: (1) lo-
calizing correctly within the AV’s location state factor, (2)
correctly detecting the other vehicle that does exist, (3)
correctly matching the other vehicle to its location state
factor, (4) observing the terminal or goal state, (5) detecting
the gap correctly based on predictions, etc.

Rewards: RT : ST × A → R are rewards defined by:
(1) 0 for the goal state, (2) −1000 for any other terminal
state, and (3) −1 for all other state-action pairs.

Monitor: MT uses tracked vehicle f tvov ∈ F tv and vir-
tual vehicle fvvov ∈ F vv features to instantiate and terminate
its DCs Cj : (1) instantiation within a constant distance from
the intersection (e.g., 50 meters), and (2) termination upon
complete traversal of the intersection lane.



Fig. 3. Experiments demonstrating MODIA on a fully operational au-
tonomous vehicle prototype at the first T-intersection. The abstract map
(bottom) shows the lanes (black), stop line (red), path (green), and points
along the route (numbers) corresponding to each of the three pictures
(above).

IV. EXPERIMENTS

We evaluate the MODIA architecture and its POMDPs on
a real autonomous vehicle in Santa Clara, California at two T-
intersections. Figure 3 demonstrates the approach’s success.

Baselines: MODIA is compared with two established
baseline algorithms: Ignorant and Naive [19]. The two base-
lines represent the two extremes of rule-based systems to
serve as a lower and upper bounds for AV behavior. The Igno-
rant baseline simply ignores virtual vehicles. This represents
rapid intersection navigation while following the law. The
Naive baseline carefully edges into the intersection, instead of
using virtual vehicles. This represents a cautious intersection
navigation while following the law. Both baselines lack the
POMDP reasoning about limited visibility in MODIA.

Metrics: Speed profiles measure the distance traveled
versus speed. They represent the algorithms’ control of
arbitration point actions. Visibility profiles measure the dis-
tance traveled versus the virtual vehicle’s probability of not
existing. They represent the effect of virtual vehicle DCs.

T-Intersection Experiments: The T-Intersection experi-
ments consider the AV arriving at the stop line under an
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Fig. 4. Results from the experiments on a fully operational autonomous
vehicle prototype at two T-intersections (first two rows and last two rows).
MODIA (green lines) is compared with baselines Ignorant (red lines) and
Naive (blue lines). Metrics include: Speed Profiles (first and third rows) and
Visibility Profiles (second and fourth rows).

occlusion to the left and right. In Figure 4 (a) and (b),
the speed profile shows MODIA and the two baselines all
stopping at the stop line at 15 meters for (a) and 5 meters for
(b). The baselines then produce aggressive and conservative
behavior, respectively. The visibility profile shows that they
lack any awareness about limited visibility. We observe
that MODIA is aware of its limited visibility, as it slowly
edges forward into the intersection cautiously. MODIA has
instantiated two virtual vehicle DCs, one for each incoming
lane. It slows briefly while the POMDPs gain confidence
that there are no other real vehicles. Only then does it
safely proceed forward. This illustrates POMDP DCs, virtual
vehicles, and successfully navigating a T-intersection under
limited visibility.

V. CONCLUSION

This paper proposes a novel architecture for implement-
ing POMDPs on an actual autonomous vehicle within the
MODIA framework. A novel POMDP solution for limited
visibility reasoning at a T-intersection is presented. Experi-
ments demonstrate success on a fully operational autonomous
vehicle prototype acting in the real world.
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