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Abstract— We present a solution for intelligent planning of
engine activations for series hybrid electric vehicles (HEVs).
Beyond minimizing energy expenditure, other real-world objec-
tives must be incorporated, such as minimizing the perceived
engine noise and the frequency of mode transitions between
activation and deactivation. We model this problem as a multi-
objective stochastic shortest path (MOSSP) problem that takes
a vehicle model and navigation map as input and outputs
a engine activation policy. The vehicle model and navigation
map are learned from GPS traces with metadata, and includes
the topological road structure, traversal speeds/times, battery
consumption/regeneration, and ambient noise. We analyze our
results in simulation on different navigation maps generated
from actual GPS traces learned from a real series HEV.
Experiments in simulation demonstrate that our approach
compared with the baseline system can reduce total energy
expenditure (EE), namely on hills, by up to 3%; total additional
noise (AN) generated by up to 15%; and total mode transition
(MT) frequency by up to 12%. The approach is demonstrated
on a real series hybrid vehicle, driving on real public roads.

I. INTRODUCTION

Hybrid electric vehicles (HEVs) benefit from the many
energy and performance characteristics of pure electric ve-
hicles as well as increased ranges and the rapid refueling of
pure gas-powered vehicles [1]. There are three categories of
HEV: series, parallel, and series-parallel [2]. Series HEVs
have a straight-forward drivetrain that uses an efficient gas-
powered engine whose only purpose is to power a compact
battery that an electric motor uses to control the wheels.
Conversely, both parallel and series-parallel have complex
drivetrains that incorporate a gas-powered engine to directly
control the wheels in addition to its electric motor. The
key to reducing energy expenditure (EE), additional noise
(AN), and mode transitions (MT) in HEVs, especially series
HEVs, is designing an intelligent algorithm that activates and
deactivates the gas-powered engine.

Engine activation approaches for series HEVs vary widely
from hand-tuned control to machine learning techniques [1],
[2], [3]. Early approaches use hand-crafted rules based on
state-of-charge (SOC) of the battery under different condi-
tions [4]. While simple, they are brittle and cannot benefit
from predictions. One-step optimization methods that model
the vehicle’s battery, motor, and engine using deterministic
predictions to make activation decisions have been tried [5].
Unfortunately, they are not robust to the uncertainties of the
real world and can still be computationally challenging to
solve in real time. A more recent hierarchical approach used
high-level plans for optimal SOC trajectory values and low-
level model-predictive control (MPC) based on predicted ve-
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Fig. 1. Results from experiments on a real vehicle driving on public roads:
the activation decisions of a 2018 Nissan Serena (left) versus the proposed
approach (right). The green (engine off) and red (engine on) lines denote
the vehicle’s traversed path. This is overlaid on top of the navigation map
in black (higher speed road) and blue (lower speed road).

locity and planned SOC [6]. Unfortunately, MPC is myopic
and does not properly account for the effects of previously
chosen actions on the present state.

Recently the focus has broadened to consider multiple
objectives, including noise reduction [7] and emissions [8].
Noise reduction is increasingly cited as an important objec-
tive for customers and in society [9], although to date only
a few hand-crafted or genetic algorithm approaches exist for
it [7]. Another objective of rising import is minimizing mode
transitions between engine activation and deactivation [10],
as it is cited as potentially disruptive to the passengers if
frequently applied [11]. Multi-objective methods to date have
mainly focused on MPC approaches [12] with limited model-
ing of sequentiality in their optimization. The multi-objective
Markov decision process (MDP) as a model have been
used successfully in other vehicle-related domains such as
route planning [13], [14] and autonomous vehicle decision-
making [15], [16]. Prior work using Markov chains [8], [10]
objectives show promise in Markov-based models, but do
not propose a multi-objective MDP-based model built from
learned navigation map and implemented on a real vehicle.

Specifically, this paper introduces a novel multi-objective
stochastic shortest path (MOSSP) MDP-based model for
intelligent engine activation. Based on the rising multi-
objective foci in the literature discussed above, the objectives
considered are to minimize the total energy expenditure, the
experienced noise, and the number of mode transitions. The
MOSSP is built on top of a learned navigation map from
real vehicle data, customizable based on driver behavior.

Our contributions are: (1) a multi-objective SSP-based
model for intelligent engine activation planning, (2) two
novel multi-objective extensions of a state-of-the-art SSP
solver called FLARES, both using a scalarization function
and through local action restriction, (3) a description of a
learning method for both vehicle parameters and the under-
lying navigation map, and (4) experiments demonstrating the
effectiveness of the MOSSP engine activation approach in
simulation and on an actual series hybrid vehicle (Figure 1).



II. BACKGROUND
A multi-objective stochastic shortest path (MOSSP) prob-

lem [17], [18] is defined by the tuple 〈S,A, T, ~C, s0, G〉.
SSPs are a formal generalization of both finite and infinite
horizon MDPs. S is a set of states. A is a set of actions.
T : S × A × S → [0, 1] is a state transition function
such that T (s, a, s′) = Pr(s′ | s, a) denotes the probability
that successor s′ occurs given action a was performed in
state s. ~C : S × A → Rk is a multi-cost function such
that ~C(s, a) = [C1(s, a), . . . , Ck(s, a)]

T with each Ci(s, a)
denoting the cost of objective i for being in a state s and
performing the action a. The initial state s0 is provided, as
well as a set of goal states G ⊆ S.

A policy π : S → A maps each state to an action. Given a
policy π, the value ~V : S → Rk defines the expected costs.
For the initial state s0, the value is:

~V (s0) = E
[ ∞∑
t=0

~C(St, At)
∣∣∣S0=s0;π

]
with St and At denoting the random variable of the state and
action at time step t, respectively. A scalarization function
f : Rk → R converts a MOSSP to an SSP [18] and is
denoted with the subscript f such that f(~V (s)) = Vf (s) and
f(~C(s, a)) = Cf (s, a). The scalarized objective is to find a
policy π that minimize the expected costs of the initial state,
governed by the Bellman optimality equation:

Vf (s) = min
a∈A

(
Cf (s, a) +

∑
s′∈S

T (s, a, s′)Vf (s
′)
)
. (1)

In general, to solve a MOSSP requires a proper policy
exists. A proper policy π has: (1) there exists a policy that
reaches a goal with probability 1, and (2) all states that do
not reach the goal with probability 1 result in an infinite cost.

A MOSSP can be solved by applying Equation 1 until
convergence. However, this is very slow in general. More
advanced optimal algorithms leverage heuristic search and
Monte carlo sampling in order to intelligently explore the
state space. One such optimal algorithm is called labeled
real-time dynamic programming (LRTDP) [19]. A fast ap-
proximation of LRTDP is called fast labeling from residu-
als using sampling (FLARES) [20]. Its labeling technique
checks a fixed depth instead of the full depth.

An alternative objective is to consider a lexicographic
ordering over objectives [13] parameterized by slack ~δ =
[δ1, . . . , δk−1]T . Each objective i is maximized in order,
allowing a deviation from its optimal value by up to δi to
improve subsequent objectives. Formally, the lexicographic
objective is to find a policy π such that for all i:

maximize
π

V πi (s0)

subject to V ∗j (s0)− V πj (s0) ≤ δj , ∀j < i

with each V ∗j (s0) denoting the optimal policy constrained
in the same manner at j. A fast approximate of this is
called local action restriction (LAR) [13]. It restricts the
available actions via local slack ~η=[η1, . . . , ηk−1]T at s by
Ai+1(s)={a∈Ai(s)|V ∗i (s)−Q∗i (s, a)≤ηi} with A1(s)=A.

III. INTELLIGENT ENGINE ACTIVATION
PLANNING

We present the solution by describing vehicle parameters,
the process for learning the navigation map, and then the
MOSSP model built from the parameters and map.

A. Vehicle Parameters

The vehicle parameters are any relevant vehicle-specific
information used by in the MOSSP model for planning. They
are listed in Table III-A. Series hybrid vehicles have a small
battery capacity θbc that charges from a gasoline-powered
engine at power θep. When activated, the engine generates
noise following a learned model θen (Section III-C.3). The
engine can be manually activated within the range [θae, θae].
However, if the battery level falls below this range then the
engine turns on. Above this range turns the engine off. Also,
the engine automatically turns on when traveling at speeds
greater than θae. In any case, when the engine is on, it
expends fuel at an efficiency θfe, consuming at a rate of
θfc from its fuel tank with capacity θft.

Name Units Variable

Battery Capacity kWh θbc
Auto Engine On/Off Battery Level Range [kWh, kWh] [θae, θae]
Auto Engine On/Off Speed km/h θae
Engine Battery Charge Power kW θep
Engine Fuel Tank Capacity L θft
Engine Fuel Consumption L/100km θfc
Engine Fuel Efficiency % θfe
Engine Noise dB θen

TABLE I
THE VEHICLE PARAMETERS RELEVANT TO PLANNING.

The vehicle parameters are assumed to be known, though
they can be learned as well. The simplest form of learning
is to learn a constant for each of these by averaging each
term over time. A more expressive and accurate model fits a
function to each (a generalization of a constant average). For
example, engine battery charge power θep is better described
as function of the current battery level, speed, and slope.

B. Navigation Map

The navigation map is defined as the directed graph
〈V,E〉. Each vertex v ∈ V simply has the parameters: id,
latitude, longitude, and altitude, as defined in Table III-B.
It defines a coordinate in space as well as a unique id.
Each edge e ∈ E has the parameters defined in Table III-
B. It defines a to and from vertex, a unique id, and all the
semantic road traversal information necessary for planning.
Edge parameters are self-descriptive, such as the number
of times traversed entt and average speed eas. Average
battery consumption/regeneration eabcr refers to all non-stop
driving along the edge. It automatically incorporates the
consequences of slope, road type, and even traffic, by simply
recording on average how much change in battery level there
was after traversal. It also independently models full stops,
denoting how many times a stop occurred ents, the duration



Name Units Variable

Id — vid
Latitude degrees vlat
Longitude degrees vlon
Altitude m valt

TABLE II
THE NAVIGATION MAP VERTEX PARAMETERS RELEVANT TO PLANNING.

Name Units Variable

id — eid
From Vertex Id — efrom
To Vertex Id — eto
Number of Times Traversed — entt

Number of Times Stopped — ents

Average Speed km/h eas
Average Traversal Time h eatt
Average Stop Time h east
Average Battery Consumption/Regeneration kWh eabcr
Average Battery Regeneration On Stop kWh eabrs

TABLE III
THE NAVIGATION MAP EDGE PARAMETERS RELEVANT TO PLANNING.

of the stop east, and how the average battery level change
from regenerative braking eabrs.

The navigation map can be learned from the vehicle
traversing the roads. Let a GPS trace be defined as a vector
~g = 〈g1, . . . , g|~g|〉. Let G be a set of GPS traces. For each
GPS trace, which are discrete points, we pair each ~gi, ~gj ∈ G
for each contiguous length that they are within a pre-defined
tolerance dtol > 0 (in meters) from one another. The average
of the beginning and end points in this segment of ~gi and ~gj
forms two vertices. An edge is then added that contains the
parameters from Table III-B. That is, it averages all recorded
speeds, battery consumption, etc. along these segments.

C. Intelligent Engine Activation MOSSP

The objective is to plan an engine activation for each
possible state of the world that could arise. As the vehicle
drives this plan can be further refined. This means given the
vehicle’s current position, plan if the gas-powered engine
should be turned on or off given the historic driving patterns
learned in the navigation map, including the final goal
locations. Importantly, battery consumption/regeneration is
stochastic based on: (1) the branching statistical distribution
of edge traversal times; (2) multiple possible routes splitting
and joining to reach the same goal, and (3) regenerative
braking during stochastic stops in slow traffic and traffic
lights. Thus the battery level at any upcoming navigation map
edge has a probability distribution associated with it. This
stochastic process is naturally modeled as a Markov chain;
however, we also take actions that affect the battery level,
namely to turn on or off the gas-powered engine. We propose
a MOSSP, which is a generalization of a Markov decision
process, that accurately models this planning process.

1) State and Action Spaces: The state space in the
MOSSP is defined as S = Se × Sbl × Ses. Se = E is
the set of edges in the navigation map, that is the roads
that the vehicle has historically driven. Sbl ⊂ [0, θbc] is
the current battery level (in kWh) discretized at a regular

interval. Here we consider a discretization resolution of 30
with Sbl = {θbc 0

30 , θbc
1
30 , . . . , θbc

30
30}. Ses = {off, on} is the

current engine status, either off or on.
The action space A = Aea = {off, on} is the engine

activation choice: if the gas-powered engine should be turned
off or on for the next edge traversed.

The initial state s0 = 〈s0e, s0bl, s0es〉 is the starting vehicle
location edge s0e ∈ E, battery level s0bl ∈ Sbl ⊂ [0, θbc],
and the engine status s0es such as s0es = off.

The goal states sg = 〈sge, sgbl, sges〉 ∈ G are any state
that has a self-looping edge in the navigation map, denoting
the end of learned GPS traces. Formally, the set of goal states
are G = {sg ∈ S|∃e ∈ E s.t. eto = sge ∧ efrom = sge}.

2) State Transition Function: The transition function T
requires capturing the movement in the navigation map’s
edges, the change in battery level, and the change in engine
status based on the map and action performed. For any
normal state s ∈ S−G that is not a goal, the state transition
for an action a has three components:

T (s, a, s′) = Te(s, a, s
′)Tbl(s, a, s

′)Tes(s, a, s
′)

The first component governs how the location changes
stochastically following the learned navigation map’s topo-
logical graph formed by various from efrom to eto. To this
end, let the neighboring successor edges (roads) of state s
be N(s) = {e ∈ E|efrom = se,to}. Formally, Te is then:

Te(s, a, s
′) =

{
s′e,ntt∑

e∈N(s) entt
, if se,to = s′e,from

0, otherwise

Intuitively, the planner considers the likelihood of navigating
on a successor road given the current road to be equal to
the learned patterns of routes that the driver has historically
driven in the past.

The second component governs how the battery level
changes stochastically following the learned navigation map
edge se’s energy consumption/regeneration se,abcr, average
traversal time se,att, engine activation action a ∈ A, the
engine’s battery charge power θep, the learned number of
times stopped se,nts, the learned number of traversal times
se,ntt, and the average regeneration on a stop se,abrs. Due to
the discretization of battery levels Sbl, we first must compute
the exact modeled change in s∗bl:

s∗bl =

{
sbl+se,abcr+

se,nts

se,ntt
se,abrs, if ses = off

sbl+se,abcr+
se,nts

se,ntt
se,abrs+

se,att

se,ntt
θep, if ses = on

Using s∗bl we probabilistically map this to a discrete s′bl via:

Tbl(s, a, s
′) =

{
1− s∗bl−s∗bl

s∗bl−s∗bl
, if s′bl = s∗bl

s∗bl−s∗bl
s∗bl−s∗bl

, if s′bl = s∗bl

with s∗bl, s
∗
bl ∈ Sbl being the nearest lower and upper battery

level state factors from s∗bl in Sbl, respectively.
The third component governs the change in engine status

based on the action a, as well as the hardwired auto engine



on/off range [θae, θae] and auto engine on/off speed θae.

Tes(s, a, s
′)=


1, if (se,as>θae∧s′es=on)

∨(se,as≤θae∧sbl<θae∧s′es=on)
∨(se,as≤θae∧sbl>θae∧s′es=off)
∨(se,as≤θae∧sbl∈[θae, θae]∧s′es=a)

0, otherwise

Intuitively, this just models the hardcoded engine behavior.
The engine automatically turns on when the speed is high,
a necessity when the electric motor draws a large amount of
power. The engine automatically turns off or on when the
battery capacity is too high or low, respectively, for long-
term vehicle and battery health. Otherwise the engine follows
activation requests via the MOSSP policy’s action.

Lastly, for a goal state sg ∈ G ⊂ S and action a:

T (sg, a, s
′) =

{
1, if s′ = sg
0, otherwise

which simply defines goals as a self-looping absorbing states.
3) Cost Functions: Multiple costs are considered in the

MOSSP planning model. An important cost is energy expen-
diture (in kWh) which must factor in the battery consumption
or regeneration of traversing an edge (road) in the navigation
map, the expected energy gains of regenerative braking, and
the cost of fuel spent to regenerate the battery when using
the gas-powered engine. The toggling of the engine from off
to on or on to off is also a cost, as this is both inefficient
and can be jarring to the driver and passengers. A final cost
to consider is how much extra noise (in dB) is generated
beyond the learned ambient environment’s average noise
level. Ideally, all of these costs are factored into the objective
function and minimized by the planner.

Let the cost vector ~C be defined for these objectives:
~C(s, a) = [Cee(s, a), Can(s, a), Cmt(s, a)]

T .
The first component Cee(s, a) is the expected energy

expenditure. To begin, we need to compute the contribution
of the engine status (ses, θep, and se,att) and expected
regeneration from any regenerative braking (se,ntt, se,nts,
and se,abrs from Table III-B), denoted as εes(s, a) and
εrb(s, a), respectively. Formally:

εes(s, a) =

{
θepse,att, if ses = on
0, otherwise

describes the expected power times expected time if the
engine is on, and

εrb(s, a) =
se,nts
se,ntt

se,abrs

describes the expected regeneration while stopping if the
vehicles stops. Now we can compute the expected new
battery level bl(s, a) and battery consumption bc(s, a):

bl(s, a) = sbl + se,abcr + εes(s, a) + εrb(s, a)

bc(s, a) = max{0,−se,abcr}.
The wasted energy εwe(s, a) is then computed by any excess
battery level that would have gone above the capacity

εwe(s, a) = max{0, bl(s, a)− θbc}.

Given the battery level and wasted energy, we can compute
the battery regeneration br(s, a) amount:

br(s, a) = max
{
0,max{0, se,abcr}+ εes(s, a)

+ εrb(s, a)− εwe(s, a)
}

The total energy also includes how much fuel was spent
regenerating the battery. This amount of energy contribution
from fuel used to power the engine, εfe(s, a), is proportional
to the ratio of engine’s generated energy to the engine’s
efficiency θfe in conversion of fuel to energy stored in the
battery:

εfe(s, a) =
θepse,att
θfe

.

Finally, we can compute the total energy cost Cee(s, a):

Cee(s, a) = bc(s, a)− br(s, a) + εfe(s, a)

which is equal to the battery energy consumed minus the
battery energy regenerated plus the fuel energy expended as
part of any engine activation.

The important second component Can(s, a) is how much
additional noise is generated if the engine is activated. A
vehicle noise model θen : Se × Ses → R+ maps the speed
limit on an edge and the engine status to the cabin noise (in
dB). The model was learned using polynomial regression
by driving the vehicle at different speeds (e.g., 10 km/h
increments from 0 to 100) and recording the cabin noise (in
dB) with the engine on and off. The amount of additional
noise experienced (in dBh) is defined as the excess noise of
the current engine status versus it being off, for the duration
of travel time on the current road:

Can(s, a) = (θen(se, ses)− θen(se, off))se,att.

The third component Cmt(s, a) is the likelihood of a mode
transition (i.e., expected value of the engine switching). This
is simply equal to the probability that the engine will toggle:

Cmt(s, a) =
∑
s′∈S

T (s, a, s′)[ses 6= s′es]

with Iverson bracket [·]. This weighs the probability of the
selected action a intentionally toggling the engine, as well
as the automatic toggling of the engine as governed by θae
and [θae, θae].

Lastly, for any goal state sg ∈ G, the cost for all actions a
is zero ~C(sg, a) = 0, completing the requirement of a goal.

IV. EXPERIMENTS

The intelligent engine activation model and planner is
evaluated using real navigation maps generated from an
actual 2018 Nissan Serena, comparing baseline, scalariza-
tion, and lexicographic algorithms. This section covers the
experimental setting, the results, and a discussion.



Navigation Route Rule-Based Scalarization Scalarization Lexicographic Lexicographic
Map Baseline (f1) (f2) ( ~C1, ~η1) ( ~C2, ~η2)

Vee Van Vmt Vee Van Vmt Vee Van Vmt Vee Van Vmt Vee Van Vmt

Daily Driving

1 2.87 0.19 1.90 1.46 0.04 2.63 1.49 0.04 2.63 1.55 0.05 1.33 1.89 0.06 0.95
2 3.32 0.15 1.99 1.84 0.06 3.87 1.87 0.06 3.95 1.92 0.06 2.32 2.04 0.07 1.73
3 2.33 0.12 1.62 0.80 0.03 1.28 0.81 0.03 1.35 0.85 0.03 0.91 1.12 0.05 1.31
4 5.16 0.20 2.99 4.21 0.13 10.25 4.24 0.13 10.05 4.33 0.14 3.56 4.49 0.15 2.65

Mountain Driving

5 18.36 0.62 7.87 17.48 0.65 36.89 17.52 0.66 36.78 17.56 0.60 9.61 17.58 0.57 7.47
6 23.79 0.80 9.91 22.28 0.74 46.19 22.32 0.75 46.03 22.61 0.79 13.34 22.63 0.72 10.18
7 18.36 0.62 7.87 17.48 0.65 36.89 17.52 0.66 36.78 17.56 0.60 9.75 17.57 0.57 7.49
8 32.75 0.89 6.73 31.88 0.85 49.19 31.88 0.85 48.93 31.97 0.79 13.20 32.01 0.83 11.67

TABLE IV
RESULTS FROM EXPERIMENTS FOR: (1) THE RULE-BASED BASELINE, AND THE PROPOSED MOSSP WITH FOUR ALGORITHMS: (2 & 3)

SCALARIZATION AND (4 & 5) LEXICOGRAPHIC. TWO NAVIGIATION MAPS ARE CONSIDERED: (1) DAILY DRIVING AND (2) MOUNTAIN DRIVING. FOUR

DISINCT ROUTES ARE TRAVERSED WITHIN EACH MAP. METRICS ARE THE THREE OBJECTIVES AT THE INITIAL STATE: (1) ENERGY EXPENDITURE Vee ,
(2) ADDITIONAL NOISE Van , AND (3) MODE TRANSITIONS Vmt . EACH REPRESENT THE AVERAGE FROM 1000 SIMULATIONS.

A. Vehicle Parameters

The vehicle parameters assign the battery capacity to θbc
to the Serena’s capacity and the automatic engine on/off
range to [θae, θae] = [0.4θbc, 0.8θbc]. This automatic engine
on/off range was determined by repeatedly pressing the
charge mode and manner mode buttons until engine behavior
changed at a specific SOC.

B. Navigation Maps

Real vehicle data was collected from a 2018 Nissan Serena
in the Silicon Valley area in California, USA to learn two
distinct navigation maps. The GPS and CAN data were
recorded, building a model of 100-500 meter road increment
along the traces. The traces overlap with one another and
were combined to form each of the maps. These two nav-
igation maps illustrate our MOSSP approach on real world
series hybrid vehicle data. They incorporate a wide array of
features, ranging from different traversal speeds (e.g., includ-
ing traffic effects) to varied battery consumption/regeneration
amounts (e.g., increased power consumption on hills and
downhill regenerative braking).

The daily driving navigation map is built from both
residential and business roads. It represents multiple routes
driven to go between work and home, as well as nearby
businesses such as a grocery store. The roads consist of both
low suburban speeds of 30 km/h and higher highway speeds
of 80 km/h, as well as traffic and stops at traffic lights.

The mountain driving navigation map is built primarily
from more rural mountainous and winding hilly roads. It
represents a rural trip and the effects of mixed rural speeds,
turns, and steep elevation changes on a vehicle that ascends
and descends. The roads consist of hilly turns and speeds of
around 50 km/h with an altitude change of up to 300 meters.

The navigation maps are visualized in Figure 1 and the
left columns of Figures 2 and 4. As detailed above, they
are built from sampled traces along the roads. Slower speed
“quieter roads” are emphasized in blue. These roads have
more engine noise would be experienced here versus other
higher speed roads.

C. Algorithms

Both scalarization FLARES and lexicographic FLARES
are implemented for the novel MOSSP engine activation
model. Two scalarizations are used f1 and f2:

(1) f1(~C(s, a)) = Cee(s, a) + 0.1Can(s, a) + 0.1Cmt(s, a)

(2) f2(~C(s, a)) = 0.1Cee(s, a) + Can(s, a) + 0.1Cmt(s, a)

Two lexicographic orderings with slacks are used:

(1) ~C1 = [Cee, Can, Cmt]
T with ~η1 = [3, 0.2]T

(2) ~C2 = [Can, Cee, Cmt]
T with ~η2 = [0.1, 0.2]T

The proposed MOSSP-based approach is evaluated on these
four solvers and compared to a rule-based baseline [4] and
the actual Serena (2018) baseline. Its parameters are based
on the analyzed activation behavior of a 2018 Nissan Serena.
The Serena has two manual buttons to control the engine (see
Figure 3). This baseline and the vehicle parameters were
determined by driving the Serena at various speeds while
pressing these manual buttons. It follows the behavior set by
the automatic engine on/off range [θae, θae] and automatic
engine on speed θae.

D. Experiments

Experiments were done both in simulation and on a real
vehicle driving on public roads.

The simulation experiments were run on an Intel Core
i9-9980HK CPU at 2.40GHz with 8 cores, 32GB of RAM,
and Ubuntu 16.04 with Linux kernel 4.15. The simulation
environment and algorithms were written in Julia 1.5.2. For
each algorithm, navigation map, and route, 1000 simulations
were executed. Table IV summarizes these results. Figures 2
and 4 shows the behaviors of each algorithm over time.

The real world experiments were run on the 2018 Nissan
Serena in California. The algorithms control the Serena
electronically through an interface to the manual engine
control buttons on the vehicle’s dashboard. Figure 3 shows
the experimental test vehicle used. Figure 1 shows the results
of experiments on real Serena driving on real public roads.
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Fig. 2. Results from daily driving navigation map simulations. Each row is a route: 1, 2, 3, and 4. The first column shows the route overlaid in orange
on the navigation map. The next columns show the average battery level, energy expenditure, additional noise, and mode transitions, over time. The five
algorithms average performance is shown in lines: rule-based baseline (red), scalarization (f1) & (f2) (solid blue & green), lexicographic ( ~C1, ~η1) &
( ~C2, ~η2) (dotted blue & green). Each individual line is the average over 1000 simulations. The navigation map is derived from real vehicle data.

E. Discussion

Table IV shows the benefits of the proposed MOSSP
approach over the baseline, and highlights the difference
between the scalarization versus lexicographic modeling.
The MOSSP has up to 2 kWh less expected total energy
expenditure than the baseline. Accounting for variations
in the final battery levels (Figures 2 and 4), the realized
savings is up to 1 kWh. Importantly, the MOSSP significantly
reduces the experienced noise, halving it in many cases.

Figure 1 shows the success of the proposed approach
over the actual 2018 Nissan Serena baseline. The MOSSP
approach proactively plans to regenerate battery on higher
speed roads where the experienced engine noise can better
be masked, and disables the engine on lower speed roads,
all while maintaining solid energy efficiency. Conversely, the
vehicle baseline is much more reactive, myopically enabling
the engine based solely on SOC.

Comparing Figure 2 versus Figure 4 highlights the effect
of the type of driving on engine activation algorithms.
Mountain routes are longer and require more energy, result-
ing in modest but predictable energy savings. The MOSSP
algorithms are able to predict uphill and downhill sections,
proactively regenerating and conserving the battery.

Both scalarization and lexicographic objectives are shown
to work; the former slightly outperforms the latter, at the cost
many more mode transitions. In both cases, the noise and
energy preference induces the corresponding desired engine
behavior. This illustrates the MOSSP’s flexibility, allowing
direct customization for different preferences.

Fig. 3. The 2018 Nissan Serena vehicle used in the experiments (top). The
manual control buttons are also highlighted in green (bottom left). They are
triggered electronically in the experiments, such as activating charge mode
(bottom right). Figure 1 shows experimental results on this real vehicle.

V. CONCLUSION

This paper demonstrates the success of using stochastic
shortest path (SSP) problems, a generalized MDP-based
model, as a foundation of intelligent engine activation plan-
ners for series hybrid vehicles. Experiments show that the
proposed MOSSP engine activation model, created from real
vehicle data, using the FLARES algorithm outperforms rule-
based approaches on a real series hybrid vehicle.
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Fig. 4. Results from mountain driving navigation map simulations. Each row is a route: 5, 6, 7, and 8. The first column shows the route overlaid in
orange on the navigation map. The next columns show the average battery level, energy expenditure, additional noise, and mode transitions, over time. The
five algorithms average performance is shown in lines: rule-based baseline (red), scalarization (f1) & (f2) (solid blue & green), lexicographic ( ~C1, ~η1)
& ( ~C2, ~η2) (dotted blue & green). Each individual line is the average over 1000 simulations. The navigation map is derived from real vehicle data.
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