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Abstract—Decision-making in real-world robots requires a
robustness to uncertainty in dynamic environments with a bal-
ancing across multiple objectives. This paper proposes a general
model for robust multi-objective reasoning called a topological
partially observable Markov decision process (TPOMDP) and its
fully observable subclass (TMDP). TPOMDPs and TMDPs allow
for additional objective measures, such as maximizing safety,
smoothness, and/or other human preferences, to be incorporated
into a typical POMDP or MDP objective, such as minimizing
time or distance traveled. To enable use on a real robot, we also
present a scalable solver for TPOMDPs. The model is discussed
through comparisons of behaviors produced by POMDP policies
on a fully operational autonomous vehicle prototype acting in
the real world.

I. INTRODUCTION

Reasoning about multiple objectives is prevalent in many
real-world domains that require robust and safe control solu-
tions, such as water reservoir control [3], industrial schedul-
ing [1], energy-conserving smart environments [4], and an-
thrax outbreak detection [9]. Recently, multi-objective rea-
soning techniques have also been starting to be applied to
autonomous robots, such as through notions of safety in semi-
autonomous vehicles [16, 13, 17, 11]. Models for multi-
objective reasoning offer unique capabilities when designing
robots with long-term autonomy, as they allow for explicitly
modeled safety, risk, and any other robustness constraints in
conjunction with environmental uncertainties.

Multi-objective Markov decision processes (MOMDPs) rep-
resent a model of multiple objectives with two main method-
ologies to structure their typically conflicting nature: scalar-
ization and preference orderings. Scalarization approaches
attempt to weigh each objective properly in a complex
function, creating a single-objective MDP which can be
solved with standard techniques [7]. However, finding this
scalarziation function is non-trivial, and suffers from both
computational complexity issues and the conflation of the
reward function, losing any semantic meaning the objectives
might have once had. We instead leverage the latter, using
a preference ordering over objectives [5, 8], such as in
constrained (PO)MDPs (C(PO)MDPs) [2] and lexicographic
(PO)MDPs (L(PO)MDPs) [16, 13]. We assign a preference
structure and only considers other objectives in the case of
tie-breaking, combined with the notion of slack or constraints
to liberate successive objectives’ choice. Our proposed model
defines this ordering via the topological order of a directed
acyclic graph (DAG) over the constraints, generalizing both
C(PO)MDPs and L(PO)MDPs, and is called a topological
(PO)MDP (T(PO)MDP).

II. ROBUSTNESS WITH MULTI-OBJECTIVE REASONING

A topological partially observable Markov decision
process (TPOMDP) is a sequential decision-making model
defined by the tuple 〈S,A,Ω, T,O,R, E, δ〉:
• S is a finite set of states;
• A is a finite set of actions;
• Ω is a finite set of observations;
• T : S × A × S → [0, 1] is a state transition function

such that T (s, a, s′) = Pr(s′|s, a) is the probability of
successor s′ given action a was performed in state s;

• O : A×S×Ω→ [0, 1] is an observation function such that
O(a, s′, ω) = Pr(ω|a, s′) is the probability of observing
ω given action a was performed resulting in successor s′;

• R = [R1, . . . , Rk]T is a vector of reward functions for
K = {1, . . . , k} such that Ri : S × A → R denotes an
reward Ri(s, a) for performing action a in state s;

• E ⊆ K ×K is a set of edges over k rewards forming a
directed acyclic graph, with one leaf/sink reward vertex
which, without loss of generality, is reward vertex k; and

• δ : E → R+ is a function mapping edges e = 〈i, j〉 ∈ E
to a non-negative slack constraint δ(e) ≥ 0, or also
overloading notation by the equivalent δ(i, j) ≥ 0.

As in a POMDP, the TPOMDP operates over a belief
b ∈ B ⊆ 4|S| of the world. Given belief b, after performing
a and observing ω, the next belief bbaω over state s′ is:

bbaω(s′) ∝ O(a, s′, ω)
∑
s∈S

T (s, a, s′)b(s) (1)

A topological Markov decision process (TMDP) is a fully
observable a TPOMDP with Ω = S and O(a, s′, s′) = 1, such
that the reachable beliefs b ∈ B are b(s) = 1 for all s ∈ S.

The agent chooses which action to perform via a policy
π : B → A. The objective in an infinite horizon TPOMDP
seeks to maximize the expected discounted reward from an
initial belief b0 with discount factor γ ∈ [0, 1). Formally, for
a policy π, it follows: E[

∑∞
t=0 γ

tR(bt, π(bt))|π, b0] with bt

denoting the random variable for the belief at time t generated
following T and O. The value V π : B → R is the expected
reward at belief b following:

Vπ(b) = R(b, π(b)) + γ
∑
ω∈Ω

Pr(ω|b, π(b))Vπ(b′bπ(b)ω) (2)

and R(b, a) =
∑
s b(s)R(s, a) and b′π(b)ω following the belief

update in Equation 1. Also, Qπ(b, a) refers to the one step
deviation of π following action a in belief b instead of π(b).



Algorithm 1 Local action restriction (LAR) approximation.
Require: 〈S,A,Ω, T,O,R, E, δ〉: The TPOMDP.
Require: B: The set of beliefs B ⊆ 4|S|.
Require: η: The local slack specific for each e ∈ E.

1: procedure LOCALACTIONRESTRICTION(K, E, x, k, η)
2: 〈π∗, V̂∗,A〉 ← 〈π0, {}, {}〉
3: for i← x1, . . . , xk do
4: Pi ← {j ∈ K|∃〈j, i〉 ∈ E}
5: for b ∈ B do
6: Ai(b)←A∩(

⋂
j∈Pi
{a∈Aj(b)|ε̂j(b, a)≤η(j, i)})

7: 〈π∗i , V̂ ∗i 〉 ← PBVI(S, Ai, Ω, T , O, Ri, B)
8: 〈π∗, V̂∗,A〉 ← 〈π∗i , V̂∗ ∪ {V̂ ∗i },A ∪ {Ai}〉
9: return π∗

10: x ← REVERSEPOSTORDERDFS(K, E, k, η)
11: return LOCALACTIONRESTRICTION(K, E, x, k, η)

We leverage the piecewise linear convex property of a simi-
lar finite horizon TPOMDP objective to approximate the infi-
nite horizon TPOMDP. Following the same logic as POMDPs,
we use a set of α-vectors Γi for each objective i ∈ K, with
their collection Γ = {[α1, . . . , αk]T ∈ Rk|∀i ∈ K,αi ∈ Γi},
to represent the value function. The equation for π at b is:

Vπ(b) = R(b, π(b)) + γ
∑
ω∈Ω

max
α′∈Γ

∑
s∈S

b(s)∑
s′∈S

T (s, π(b), s′)O(π(b), s′, ω)α′(s′).

Point-based value iteration (PBVI) methods [6, 10, 14] apply
this at a fixed set of beliefs B, as used here. Controller-based
methods [15] can also be used with slack constraints [19].

A. Optimality Criterion

The topologically ordered constraints can subject prede-
cessor objectives to satisfying slack at the initial belief or
across all beliefs, called initial slack and universal slack,
respectively. An initial slack TPOMDP objective for initial
belief b0 is the recursively defined objective to find a policy π
that maximizes the expected value for reward i ∈ K following:

maximize V πi (b0)
subject to V ∗w(b0)− V πw (b0) ≤ δ(w, v)

∀v ∈ Ai ∪ {i},∀w ∈ Pv
(3)

with V ∗w(b0) denoting the optimal value of ancestor w recur-
sively following this same constrained objective. The differ-
ence is also denoted εw(b, a) = V ∗w(s)−Q∗w(s, a). Universal
slack ensures the constraints are satisfied at all beliefs b ∈ B.

B. Scalable Approximate Algorithm

From Equation 3 we can recognize that applying uni-
versal slack at each belief b ∈ B, with a local slack of
η(j, i) ≤ (1− γ)δ(j, i) ensures the global slack δ(j, i) is sat-
isfied [12]. We call this local action restriction (LAR). Algo-
rithm 1 implements this approach. Crucially, this is for real-
world robots and must be tractable. LAR is highly scalable,
with a complexity of PBVI times the number of objectives k.
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Fig. 1. Graphical notation representing robust autonomous vehicle
T(PO)MDP topological constraints E. The vertices K = {L,A,S, T }
denote following the law, assertiveness, smoothness, and time objectives,
respectively. For each vertex i ∈ K: (a) a three-reward L(PO)MDP; (b) a
two-constraint C(PO)MDP; and (c) a general T(PO)MDP able to capture a
richer landscape of robustness constraints.
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Fig. 2. Experiments of three POMDP policies on a fully operational
autonomous vehicle prototype at an occluded T-intersection. For a TPOMDP
implementation (e.g., following Fig 1.(c)), in all cases the law to stop at the
stop line must be followed δLA = δLS = 0. The red baseline shows possible
behavior of an assertive policy with δAT = 0. The blue baseline shows
possible behavior of a smooth comfortable policy with δST = 0. The green
line shows desired behavior, which has careful motion for visibility, provided
enough slack (δAT > 0 and δST > 0) to maximize the time objective T .

III. ROBUST AUTONOMOUS ROBOTS

In order to incorporate robustness optimization into an
autonomous robot, we now can employ a T(PO)MDP. Real
world robotic domains require more than just safety to be
successfully deployed; the robots need to be robust across
multiple considerations. The objectives can explicitly model
robustness considerations (e.g., following the law, assertive-
ness, smoothness, safety, etc.) in addition to the main objective
(e.g., minimizing time). Figure 1 shows an example of three
T(PO)MDP graphs for an autonomous vehicle domain. Fig-
ure 2 illustrates an example of the kind of difference the graph
E and slacks δ(e) will introduce in policy execution behavior,
as shown by actual robot experiments using multiple distinct
POMDPs. The POMDPs are those used in MODIA [18], a
framework enabling scalable decision-making in robots.

TPOMDPs and TMDPs allow for a rich landscape of
robustness constraints to be described in the theoretically
grounded model [12]. This model facilitates the design of
scalable algorithms, such as LAR in Algorithm 1, that enable
TPOMDPs to be deployed on robots operating in the real
world which actualize aspects of robust autonomy.
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