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Abstract— One of the bottlenecks of training autonomous
vehicle (AV) agents is the variability of training environments.
Since learning optimal policies for unseen environments is often
very costly and requires substantial data collection, it becomes
computationally intractable to train the agent on every possible
environment or task the AV may encounter.

This paper introduces a zero-shot filtering approach to
interpolate learned policies of past experiences to generalize
to unseen ones. We use an experience kernel to correlate
environments. These correlations are then exploited to produce
policies for new tasks or environments from learned policies.
We demonstrate our methods on an autonomous vehicle driving
through T-intersections with different characteristics, where its
behavior is modeled as a partially observable Markov decision
process (POMDP). We first construct compact representations
of learned policies for POMDPs with unknown transition
functions given a dataset of sequential actions and observations.
Then, we filter parameterized policies of previously visited
environments to generate policies to new, unseen environments.
We demonstrate our approaches on both an actual AV and
a high-fidelity simulator. Results indicate that our experience
filter offers a fast, low-effort, and near-optimal solution to
create policies for tasks or environments never seen before.
Furthermore, the generated new policies outperform the policy
learned using the entire data collected from past environments,
suggesting that the correlation among different environments
can be exploited and irrelevant ones can be filtered out.

I. INTRODUCTION

Designing efficient and safe planning strategies for au-
tonomous vehicles is generally challenging due to uncer-
tainty. One of the principled ways of modeling the planning
problem under uncertainty is using POMDPs [1], which have
been successfully applied in autonomous driving [2], [3]. The
POMDP formulation includes a state transition model which
represents the environment dynamics. When this model is
not readily available for a given problem, machine learning
techniques can be used to learn the environment models from
data collected at design time. Although reinforcement learn-
ing algorithms have been shown to produce effective policies
for environments that they are trained upon [4], they typically
need to be retrained to be deployed in new environments.
To overcome this limitation, models or policies previously
learned need to be transferred to new, unforeseen tasks.

In this work, we introduce the concept of an experience
filter, illustrated in Fig. 1, to reason about new tasks or envi-
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(a)  Experience 1 (b)  Experience 2 (c)  Experience 3

(f)  Unseen Experience
(e)  Experience kernel weighs policies

(d)  Task state-space

Fig. 1. (a)-(d) Different tasks or environments xi ∈ X (and
their policies π∗

i ) can be compactly represented through parameteri-
zation. (e) Here, we define the relationship between a new environ-
ment (parameterized by x4) and previously visited environments (pa-
rameterized by x1, x2, x3) using a kernel ζ(xm, x4), m = {1, 2, 3}.
(f) An experience filter exploits this relation to generate a policy for x4

given policies trained on different tasks or environments.

ronments using past experiences. The goal of the experience
filter is to filter optimal/learned policies of previously visited
environments to generate policies to ones never seen before.
By doing so, we eliminate the need to train an autonomous
vehicle’s policy on a vast range of different tasks, but
rather, interpolate existing policies to unseen similar tasks,
eliminating the need to collect any new data. Our experience
filter (EF) approach allows fast, low-effort, and near-optimal
solutions to create policies without requiring to train for tasks
or environments not seen before. Furthermore, our results
also indicate that using the EF approach to correlate and
filter previous experiences through a kernel, as depicted in
Fig. 1, yields higher performance than simply using the entire
data collected in an attempt to train an all-for-one policy.

We assume that both policies and environments can be
represented by low-dimensional, easily accessible parameter



vectors. For example, the behavior of an AV navigating along
a highway can be influenced by factors such as traffic density,
number of lanes, upcoming intersections, etc. Our proposed
experience filter takes environment representations and pa-
rameterized policies as an input, and using an experience
kernel, outputs a new policy for an unseen environment
through Bayesian reasoning between the learned and unseen
environment parameters.

The contributions of this paper are twofold: (1) we in-
troduce a new technique to learn and parameterize policies
of a POMDP with an unknown transition function from
existing data, and (2) we propose an experience filter to
efficiently plan in unseen environments by interpolating past
knowledge. We demonstrate our approach on a problem
of autonomously driving through T-intersections, and we
include demonstrations on both an actual AV and a high-
fidelity simulator CARLA [5]. For simulation results, we
benchmark our experience filter approach using the follow-
ing performance metrics: collision risk, discomfort during
driving, and task completion time.

The paper is organized as follows: Section II gives an
overview of transfer learning techniques. Section III gives
a brief background on Dirichlet distributions, POMDPs,
and MODIA and Section IV defines the problem. Sec-
tion V presents our learning approach and experience filter.
Section VI summarizes results. Finally, Section VII draws
conclusions and discusses future work.

II. RELATED WORK

The problem of how to reduce training effort for new tasks
by leveraging the knowledge from existing tasks has been
addressed by transfer learning techniques. Existing work on
transfer learning techniques largely focuses on transferring
knowledge from previously seen source tasks to new tasks [6]
and can be divided into the following three categories.

a) Model-free transfer: Transfer learning for model-
free reinforcement learning algorithms involves transferring
knowledge between tasks in the form of experience samples,
policies, or value functions. Progressive networks [7] is
an approach to transfer learning where additional neurons
are added to a network for each new task that is learned.
Previously learned network weights are frozen, and the new
neurons are connected so as not to change the output of the
network on previous tasks. The attend, adapt, and transfer
approach [8] uses a set of attention weights to combine
the output of a set of source policies to achieve good
performance on a new task. To avoid negative transfer, a
new policy is learned from scratch and combined with the
source policies through an additional weight. The attention
weights can be learned from a small amount of data, allowing
for fast adaptation to new environments. Transfer learning
with model-free deep reinforcement learning is also applied
to task transfer for autonomous driving decision making
problems [9].

b) Model-based transfer: Prior work on transfer in a
model-based setting assumes there are unobserved parame-
ters that describe each task and seek to learn a model of these

parameters from data [10], [11]. Recent work [12] assumes
a low-dimensional latent task identifier which is inferred
online using a Bayesian neural network, allowing for fast
adaptation to new problems. Hidden parameter MDPs were
extended to allow for variations in the reward function [13].
Storing experience samples from previous source tasks and
constructing a model for the new task with an inter-task
mapping has also been done [14]. Our approach is similar
to the aforementioned work in that transfer to a new task is
done by combining previously learned models. Both model-
based and model-free approaches, however, require training
on the new task, whereas we consider the case of zero-shot
transfer in this paper.

c) Zero-shot transfer: Zero-shot transfer [15] is often
preferred when there is a known relationship between tasks.
For example, when the source task is a simulated version of
the real target task, unsupervised pre-training has shown to be
effective for enabling zero-shot transfer [16]. Alternatively,
automated measures of MDP similarity can be used [17].
Zero-shot policy transfer along with the robust tracking
controllers to tackle the source to target modeling gap
is applied in robotics [18] and autonomous driving prob-
lems [19]. In our setting, we exploit a parametric connection
between previously visited environments, using this relation
to hypothesize policies for unseen environments.

III. BACKGROUND

A. Dirichlet Distributions

Dirichlet distribution Dir (α1:n) is parameterized by
α1:n ∈ Rn

≥0 which can be treated as pseudo-counts of
different outcomes. The density of a Dirichlet distribution
is given by

P (θ1:n | α1:n) =
Γ (

∑n
i=1 αi)∏n

i=1 Γ (αi)

n∏
i=1

θαi−1
i

where Γ is the gamma function [20].
If the prior is a Dirichlet distribution and the event i is

observed mi ∈ m1:n times, then the posterior is also a
Dirichlet distribution [4]:

θ1:n | α1:n,m1:n ∼ Dir (α1:n +m1:n) .

B. Partially Observable Markov Decision Processes

A sequential decision making problem can be modeled as
a partially observable Markov decision process. A POMDP
model is represented by a tuple ⟨S,A,O, T, Z,R, γ⟩ where
S is a finite set of states, A is a finite set of actions, and
O is a finite state of observations. The system takes an
action a ∈ A from state s ∈ S and transitions to the
next state s′ ∈ S according to the probabilistic transition
function T (s′ | s, a) = P (s′ | s, a) which models the
environment dynamics. From state s′ the system obtains
observation o ∈ O according to the observation function
Z(o | s′, a) = P (o | s′, a) and receives a reward according
to the reward function R(s, a). As the system does not have
access to the true world states, it maintains a belief b(s) over
possible states. A discount factor γ ∈ [0, 1] may also be used
to prioritize earning rewards sooner than later.



The goal of the system is to find a policy π∗ to maximize
the expected total discounted reward starting from its belief
b, which can be exactly calculated using the relation

π∗(b) = argmax
a

∑
s

b(s)Q(s, a) (1)

where
V ∗(b) = max

a

∑
s

b(s)Q(s, a) (2)

Q(s, a) = R(s, a)

+ γ
∑
s′

T (s′ | s, a)
∑
o

Z(o | s′, a)V ∗(b′(b,a,o))
(3)

and b′(b,a,o) is the updated belief.
For fully observable states (MDP), the belief and observa-

tion terms in Eqs. (1) to (3) drop out, and the optimal solution
can be computed tractably using Bellman updates [21].
However, finding a solution to a POMDP using dynamic
programming is computationally very expensive, and thus,
approximate solutions are often used instead [4]. In this
work, we use the QMDP [22] offline solver, and assume
the resulting policy to be near-optimal.

C. MODIA

The multiple online decision-components with interacting
actions (MODIA) framework [23] aims to solve complicated
real world decision making problems in a scalable way by
separating them into subproblems. Instead of constructing a
single POMDP that accounts for all of the other agents in a
domain, MODIA instantiates multiple smaller POMDPs for
each agent interaction. This formulation inherently assumes
that most agents act independently from one another. At each
timestep, the safest action among all POMDPs is selected for
execution. MODIA is utilized during the experimentation.

IV. PROBLEM DEFINITIONS

In this study, our goal is to efficiently generate new
policies for unseen driving tasks or environments using past
experiences. To achieve this, we need to represent policies
by a compact representation, and then find a way to transfer
the policies. These two problems are defined as follows:

Problem 1: Parameterizing Policies: Given a driving
dataset Di containing observation triplets (oti, a

t
i, o

t+1
i ) ob-

tained from N different driving environments visited at times
t ∈ [0, τi], and a policy π∗

i learned for environment i, what
is the compact representation par(π∗

i ) of this policy?
Problem 2: Experience Transfer: Given a set of policy

representations par(π∗
i ), i = 1, . . . , N learned for N visited

environments, how can we compute a reasonable policy for
an environment that was never seen before?

In this paper, we investigate the behavior of an AV at
T-intersections. We model the AV’s behavior as a POMDP,
and assume that the Z(o | s′, a) and R(s, a) functions are
known. In the first portion of this paper, we focus on learning
the transition function T (s′ | s, a) for T-intersections of
different characteristics. Given that T , Z and R are learned
or known, the optimal policy of the POMDP can therefore

be solved for from Eqs. (1) to (3). In the second portion
of this paper, we introduce a framework that allows us to
deduce a policy for a T-intersection type that was never
seen before, by generalizing a handful number of previously
learned policies. We discuss our approaches to both of these
problems in Section V.

V. EFFICIENT TRANSITION FUNCTION LEARNING AND
TRANSFERRING

In this section, we first discuss how the policy is learned
for an individual T-intersection. Then, the experience filter,
that allows computing a policy for unseen T-intersection
types, is formulated.

A. Learning and Parameterizing the Policy

The S, A, O of the POMDP used to model the AV’s
behavior at a T-intersection while considering a single rival
vehicle is defined as follows.

State Space S: Each state s ∈ S is a 5-dimensional
(posego, sgtego, posrival, blkrival, aggrrival) vector. Here,
posego, posrival ∈ {before, at, inside, after}
denote the position of the ego and rival vehicles with
respect to the stop sign of the T-intersection, respectively,
sgtego ∈ {yes, no} denotes whether or not the ego vehicle
has a clear line of sight, blkrival ∈ {yes, no} denotes
whether or not the rival vehicle is blocking the ego vehicle’s
path, aggrrival ∈ {cautious, normal, aggressive}
denotes the aggressiveness level of the rival vehicle. Since
all five dimensions of the state space are discretized, there
are a total of 192 possible states in S.

Action Space A: Consists of three permissible actions of
the AV, which are {stop, edge, go}.

Observation Space O: The observation space is equivalent
to the state space S, and therefore also has a cardinality of
192. Note that observation o is noisy over the true state s.

In this study, we assume that the observation and reward
functions, Z(o | s′, a) and R(s, a), are known and constant
across different types of T-intersections. This is a reasonable
assumption since Z inherently captures the sensing accuracy,
and R describes driving preferences, both of which can
be quantitatively modeled a priori. Therefore, by inspecting
Eqs. (1) to (3), learning a policy for a specific T-intersection
reduces to an accurate representation of the transition func-
tion T (s′ | s, a).

In this study, we represent the learned transition function
T̃ as the posterior Dirichlet distribution:

θ(s, a) ∼ Dir
(
α(s,a) +m(s,a)

)
(4)

where θ(s, a) ∈ [0, 1]
|S| is a vector whose each element

is θ(s, a) = T̃ (s′ | s, a), ∀s′ ∈ S, given s, a. Parameters
α(s,a) ∈ R|S|

≥0, and m(s,a) ∈ Z|S|
+ describe the prior and

likelihood pseudo-counts, respectively.
A dataset Di is collected as a specific intersection i

is driven through d times. We call each drive through an
intersection a scenario, hence, there are d scenarios in Di.
During each scenario Sk, the ego vehicle interacts with
multiple rival cars and receives observation triplets, each



m(s,a) =


m(s,a,s′1)

m(s,a,s′2)

...
m(s,a,s′|S|)

 where m(s,a,s′) =
∑

Sk∈Di

∑
Cj∈Sk

∑
(sijk,aijk,s′ijk)∈Cj

∫ t=τk

t=0

1


sijk(t) = s
aijk(t) = a
s′ijk(t) = s′

 dt (5)

of them labeled Cj . As a part of the MODIA definition
(Section III-C), a separate PODMP is instantiated for each
rival car at the T-intersection. These instantiated POMDPs
may use a baseline or expert policy (if available). As a
result, separate (s, a, s′) triplets are recorded for each rival
vehicle. Therefore, the likelihood pseudo-counts m(s,a) can
be formulated as in Eq. (5) where τk denotes the total
time taken in scenario Sk, and 1{·} outputs a scalar 1
if all expressions inside the curly braces are true, and 0
otherwise. However, due to partial observability, we cannot
directly observe the states, but rather, receive observations
from the world, making Eq. (5) inaccessible for POMDPs.
Furthermore, the integral in Eq. (5) is often intractable. As
a remedy, we use the most likely state with respect to the
observations received, and discretize the scenarios into small
timesteps:

m(s,a,s′) =
∑

Sk∈Di

∑
Cj∈Sk

∑
(otijk,a

t
ijk,o

t+1
ijk )∈Cj

τk∑
t=0

1


s̃tijk = s

atijk = a

s̃t+1
ijk = s′


(6)

where

s̃t+1
ijk = argmax

s
bt+1
ijk (s)

bt+1
ijk (s) = P (s | btijk, atijk, otijk).

We represent a learned policy π∗ through a set of parame-
ters par(π∗). For POMDP representations, through Eqs. (1)
to (3), the optimal policy depends on T , Z and R. As
previously mentioned, we are treating Z and R to be known
a priori, and assumed to be constant across different T-
intersection characteristics. Hence, we can readily accept the
parameters that describe a learned policy in our AV domain
to be T (s′ | s, a), ∀a ∈ A, ∀s′, s ∈ S . From this logic,
par(π∗

i ) for intersection i is distributed by the product

par(π∗
i ) ∼

∏
s

∏
a

Dir
(
α(s,a) +m(s,a)

)
(7)

and contains |S|2 × |A| = 1922 × 3 = 110, 592 parameters.

B. Experience Filter

We first define the environment state-space X and experi-
ence kernel ζ(·) as follows.

Definition 5.1: Let a set of parameters (ψ1, · · · , ψK)
where ψk ∈ Ψk, k = 1, ...,K efficiently represent an envi-
ronment. Then, an environment state-space is the Cartesian
product X = Ψ1 × · · · ×ΨK which can be defined as

X = {(ψ1, · · · , ψK) | ψk ∈ Ψk, k = 1, ...,K} . (8)

Definition 5.2: Given an K-dimensional environment
state-space X , the experience kernel ζ(xn, xk) outputs the

correlation between two environment states xn, xk ∈ X
while satisfying

K∑
k=1

ζ(xn, xk) = 1 ∀n ̸= k. (9)

Using Defs. 5.1 and 5.2, we can define the experience filter.
Definition 5.3: Given the environment states visited and

recorded DX ⊂ X , and parameterized learned policies
computed for these environments DΦ = [par(π∗

i )]
N
i=1, an

experience filter for an unseen environment state x is formu-
lated as

EF (x,DX ,DΦ) = ζ(x,DX )TDΦ (10)

=

N∑
i=1

ζ(x, xi) par(π
∗
i ).

Here, ζ(x,DX )T is an N -dimensional vector whose ele-
ments are ζ(x, xn), ∀xn ∈ DX . Intuitively, Eq. (10) takes
a weighted average of the parameters of learned policies to
previously seen environments. The resulting value is used
as the parameters of the articulated policy for the unseen
environment x, which for our AV domain, acts as the
transition function for any POMDP instantiated in x.

VI. EXPERIMENTATION

In this section, we first demonstrate learning policies
for visited environments using the approach described in
Section V-A. Then, using the CARLA simulator [5], we
demonstrate how our experience filter from Section V-B
can generalize previously learned policies to unseen envi-
ronments states.

A. Policy Learning with Real AV

Our policy learning approach is implemented on a fully
operational AV prototype acting in the real world. We
began with uniform policy parameters and drove through an
intersection. At each trip, the action taken by the autonomous
agent, and the low-level representation of the observations re-
ceived by the AV’s sensors are recorded at a high frequency.
These data are then used to create policies through Eqs. (5)
and (6) for the corresponding intersections. The intersection
has occlusions of parked cars to the left and right, requiring
careful edge actions based on the belief. The AV’s speed and
time were recorded as it progressed through the intersection.
Then, we drove the AV through a loop of 3 different
intersections 5 times. These experiences were transferred to
the scenario used at the original intersection. This learned
policy was then tested at the original intersection. Fig. 2
shows the results from these experiments, demonstrating the
real-world efficacy of this learning in a deployed autonomous
agent.
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Fig. 2. A fully operational AV prototype acting at a real intersection. The
behaviors of two policies are shown: before learning (red dotted line) and
after learning (green solid line), in speed, time, and visibility profiles.

In Fig. 2 (b), the speed after the stop line is much slower
than the learned policy’s speed. In fact, the initial policy
oscillates between stop and edge. Conversely, the learned
policy has learned to cautiously select the edge action until
it believes there are no oncoming cars outside of view. (Fig. 2
(d) shows the percentage of the side roads that are visible as
it traverses.) The learned policy’s improved behavior results
in a much smoother and faster navigation, as shown in the
time profile in Fig. 2 (c).

B. Testing in Simulations

In this setting, we narrow our focus to stop-uncontrolled
T-intersections, simulated in the high-fidelity CARLA envi-
ronment [5]. The ego vehicle is controlled by a stop sign
before crossing the intersection, and the rival vehicles are
uncontrolled, as depicted in Fig. 3.

(a) At intersection (t = t0) (b) Inside intersection (t = t1)

(c) Inside intersection (t = t2) (d) After intersection (t = t3)

Fig. 3. Ego vehicle (green) navigating around rival vehicles (white) at
an unforeseen stop-uncontrolled intersection using the proposed experience
filter approach in a CARLA [5] simulator environment.

1) Scenario Setup: We use the following three parameters
to represent an environment, which effectively describe the
overall characteristics of an intersection:

ψ1 ≜ Corner visibility

ψ2 ≜ Traffic density

ψ3 ≜ Driver behavior

The corner visibility parameter ψ1 ∈ {yes, no} de-
scribes whether environmental occlusions (e.g., buildings
or parked cars occluding the view of the road) exists
around the corner or not. Traffic density parameter ψ2 ∈
{low, med, high} changes depending on the number
of the cars in the environment. Driver behavior ψ3 ∈
{cautious, normal, aggressive} depends on the
overall rival speed profiles, for example, an intersection
near a school district will likely have vehicles approach the
intersection cautiously, whereas a junction to a highway will
have aggressive (speeding) vehicles passing through. In this
study, we assume that the environment/task state-space (i.e.
X ) is fully observable. This is a reasonable assumption since
these characteristics are either static, or can be determined
with high confidence. E.g. the congestion of data received
through the AV’s LIDAR can determine the traffic density.
However, what is unobservable is how the other vehicles will
react to the ego vehicle, and this is described by the state-
space of the POMDP instantiations for all other vehicles in
the vicinity.

2) Policy Learning from Training Data: During the de-
sign time, the ego vehicle is tasked to make a turn at T-
intersections with varying ψ = {ψ1, ψ2, ψ3} parameters that
describe the intersection. The environment state space is
consists of every combination of ψ1, ψ2, ψ3, hence, there
are 18 possible T-intersection characteristics to train on.
Each environment state is run for 101 scenarios with where
the start and goal locations of rival agents are initialized
randomly. Then, similar to the previous section, actions and
observations of the AV are recorded, and the policy for each
T-intersection characteristic is computed by solving Eqs. (1)
to (3) using QMDP [22], where two sample policy maps are
given in Fig. 4.
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(a) Policy learnt for T-intersection
having high visibility, medium traf-
fic density, normal driver behavior.
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(b) Policy learnt for T-intersection
having low visibility, high traffic
density, aggressive driver behavior.

Fig. 4. Example policies learnt from the data collected inside the CARLA
simulator, and used with the experience filter created. Ego vehicle is at the
stop sign for both policies. As an example, a point in the centroid of the
plot would correspond to the belief of the rival car blocking with 50%, and
being located either “inside” or “at” the intersection with equal probability.



TABLE I
OUR EXPERIENCE FILTER (EF) APPROACH IS TESTED FOR MULTIPLE TRAINING EFFORTS ON THREE DIFFERENT METRICS: COLLISION RISK,

DISCOMFORT, AND TIME TAKEN (LOWER IS BETTER FOR ALL). AS THE TRAINING EFFORT INCREASES, THE PERFORMANCE OF THE EF CONVERGES

TO THE EXPLICITLY TRAINED POLICY, AND OUTPERFORMS BOTH BENCHMARKS.

Training Effort Collision Risk Discomfort Time Taken

Our method
Experience Filter 3 0.8173± 0.1266 0.7483 ± 0.0531 0.7971 ± 0.0444

6 0.5640± 0.1581 0.5936± 0.0411 0.6783± 0.0179
9 0.5609± 0.1554 0.4283 ± 0.0202 0.5042 ± 0.0153
12 0.5132 ± 0.1369 0.4305 ± 0.0206 0.5137 ± 0.0125
15 0.4587 ± 0.1473 0.4345 ± 0.0202 0.5324 ± 0.0325

Benchmarks
Entire Dataset 3 0.7998± 0.1346 0.8684± 0.0727 0.9380± 0.0619

6 0.7484± 0.1517 0.9019± 0.0805 0.9146± 0.0555
9 0.8113± 0.1297 0.9218± 0.0781 0.9144± 0.0528
12 0.6838± 0.1660 0.8762± 0.0753 0.9127± 0.0539
15 0.8488± 0.1218 0.9098± 0.0683 0.9120± 0.0456

Nearest Neighbor 3 0.7497 ± 0.1437 0.8292± 0.0620 0.8373± 0.0484
6 0.4135 ± 0.1635 0.5203 ± 0.0416 0.6158 ± 0.0291
9 0.5201 ± 0.1601 0.5065± 0.0228 0.5937± 0.0314
12 0.5610± 0.1462 0.5054± 0.0232 0.6384± 0.0421
15 0.5411± 0.1547 0.4643± 0.0222 0.5643± 0.0228

Lower Bound
Explicit Training − 0.4345± 0.1644 0.4343± 0.0153 0.5061± 0.0124

3) Creating the Experience Filter: In this study, we have
selected the experience kernel to be a normalized Gaussian
kernel:

ζ(xn, xk;σ, ℓ) = η σ2 exp

(
−∥xn − xk∥2

2ℓ2

)
(11)

where η, σ, and ℓ constants are the normalizing factor, kernel
variance, and kernel lengthscale, respectively. These constant
values may be identified through likelihood maximization
with respect to the data. Domain knowledge may also be
incorporated to the selection of the experience kernel, if
available.

4) Benchmarking: We compare our experience filter ap-
proach with these three baselines:

• Entire dataset: The entire training dataset collected so
far is used to learn a a policy, to be benchmarked on the
test scenario (i.e., no kernel is used to filter out data).

• Nearest neighbor: The policy used on the test scenario
(π̃) whose characteristics are ψ̃ are through by the
policies π∗

i trained on ψi using the relation:

par(π̃) ≊ par(π∗
i ) s.t. i = argmin

i∈{1,...,N}
∥ψ̃ −ψi∥

(12)

• Explicit Training: The transition function for the test
scenario is learned explicitly using data collected for
this scenario setting. Therefore, this benchmark acts as
a lower bound for our performance metrics.

We compare these methods in terms of collision risk, dis-
comfort, and time taken. The results are shown in Table I.
Here, training effort refers to the number of policies obtained
specifically for different training environments, i.e. possible
combinations of ψ1, ψ2, ψ3. Collision risk is inverse of the
minimum distance of the ego vehicle to any rival while

navigating through the intersection. Discomfort is integral of
the ego vehicle’s absolute acceleration during its trajectory.
Time Taken is the amount of time taken for the ego vehicle to
complete crossing the intersection after stopping at the stop
sign. All three scores are normalized based on the largest
value observed over all the testing trials. As can be seen, our
experience filter (EF) approach outperforms both the policy
trained using the entire dataset and the nearest neighbor
approach, after a certain amount of training effort. The reason
we see this trend is due to the fact that as the training
effort increases, there is better coverage of the environment
state-space X . Our results demonstrate that when an unseen
task is faced, it is insufficient to naively choose the learned
policy of the “closest-looking” past experience (i.e. nearest
neighbor). The EF is able to outperform by taking advantage
of other experiences through the kernel. Another critical
conclusion is that attempting to use the entire data recorded
to create a policy (i.e. entire dataset) performs worse than
EF. Intuitively, this is because trying to learn all data at
once gives an “average” performance across different task
states xi ∈ X , whereas the EF allows a more intelligent
method to correlate unseen tasks to past experiences and filter
out ones that are less relevant. We also observe that as the
training effort increases, the performance of the experience
filter converges to the explicitly trained policy, as desired.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel approach to
generate policies for tasks or environments an autonomous
vehicle agent has not seen before. We propose an experience
filter that utilizes a kernel over parameterized learned policies
that had been trained on different past tasks/environments.
This kernel suggests a correlation factor between the learned
policy for the unseen task and past experiences, eliminating



the requirement of collecting any new data, and thereby
allowing fast, low-effort, and near-optimal solutions.

Our methodology assumes both policies and environments
can be represented by low-dimensional, easily accessible
parameter vectors. Tests on both an actual AV and a re-
alistic simulation environment are performed, where the
interactions between the ego and other vehicles are modeled
as multiple partially observable Markov decision processes
(POMDPs). Our results indicate that the experience filter
yields a higher performance than simply using the entire data
collected as commonly done, and is able to filter out irrel-
evant past experiences. We also show that our kernel-based
approach outperforms a naive nearest neighbor approach.

Future work includes testing the experience filter on other
real-life domains beyond T-intersections, and extending our
implementation that accommodates continuous dynamics.
We will also look into the optimization of the kernel itself
with respect to existing data, and inspect under which
conditions a kernel would satisfy certain optimality bounds.

CODE

The code used for this paper can be found publicly in
this GitHub repository: https://github.com/sisl/
Experience-Filter
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